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1. Introduction to Smart Condition Assessment



Condition Assessment Overview
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Main assessment approaches for ageing civil 
infrastructure:  
 Health monitoring methods (i.e. using continuous automated 

measurements of structural response and/or loading over a period) 
 Condition assessment methods (our focus today)

Traditional condition assessment:    
 How: Use of trained inspectors 
+ decision-making criteria (e.g. condition rating)
 Pros: Established, intuitive 
 Cons: Time-consuming, laborious
+ sometimes dangerous  

Cable-stayed 
bridge health 

monitoring with 
one permanent 
accelerometer 
shown (joint 

research with 
Sharry, Guan, 

Oh and Hoang)
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Smart condition assessment:    
 How: use of remote cameras (to capture image data) 

+ AI deep learning/image processing techniques (for 
feature recognition, extraction and classification)
 Pros: → fast, affordable and safe features offered by 

computer vision system 
 Cons: still new → requiring time for full development 

+ knowledge transfer

Source of figures: Application of artificial intelligence on assessing surface damage of concrete bridges (Courtesy of Luong and Ngo, 2022)

Aim: Camera + AI algorithm 
replaces Human eye + Brain 

Condition Assessment Overview
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03 common levels:
 Level 1: Detecting the occurrence of 

damage/defect through image classification, 
e.g., most CNNs can do this

 Level 2: Locating damage through object
detection (i.e. damaged region recognition)
e.g., R-CNN, faster R-CNN and YOLO

 Level 3: Assessing more detail damage 
characteristics (e.g. severity) through 
semantic segmentation, i.e. working at the 
pixel level for precise interpretation of the 
geometrical space around objects, e.g., U-
Net, Mask R-CNN

Hierarchy of Smart Condition Assessment

Sources of some Figures: Luong and Ngo 
(2022) and joint work with Khuc et al. (2022)
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Achievements:  
 Attracted numerous high-quality studies in all these 

three levels…
 …partly because of recent rapid advancement in 

image acquisition and AI computing technologies

Challenges & research need:  
 Most existing assessment models were developed 

using images with clear damage/defects
• C1: More research is needed for real-world image 

datasets i.e. with increased complexities
 Most existing assessment models were developed 

for deployment onto powerful/sever-/cloud-based AI 
computing machines
• C2: More research is needed for emerging mobile/ 

embedded systems for real-time implementations

Current Status of Smart Condition Assessment

Image acquisition using UAV (Luong and Ngo, 2022)

Challenging inspection photos from Queensland bridges
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2. Application to bridge ASR damage: Overcoming 
the challenge of complicated image backgrounds
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Research significance/highlights:  
 ASR: destructive phenomenon known as ‘concrete 

cancer’
 Timely detection of ASR cracks ensure long-term 

durability, structural integrity for civil structures
 ASR damage is heavily affected by texture 

backgrounds, causing CNN evaluation confusion 
 First time ASR damage detection is tackled by AI 

vision

Creation of Image Dataset:  
 Use 35 inspection photos (ranging from 800x600 to 

5184x3888 pixels), cropped to 256x256 patches to 
suit most CNNs and retain image quality
 Final dataset has 1706 images (609 with ASR 

defect)

Original Inspection Photos Taken from 
ASR Affected Bridges in Queensland

Example of an 800×1067 Photo  
Cropped to 256×256 Patches

Image Dataset

Project Background
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Damage detection framework

IPTs: Image Processing Techniques CNN: Convolutional Neural Network

Phase I- Use of Pre-trained models
 Selected 3 representative CNN models 

based on our previous study (Nguyen et al., 
2022)
 InceptionV3 found the best performing CNN 

to deal with ASR damage
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Framework & Phase I- Use of Pre-trained Models
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Pixel Intensity 
Analysis 

(AIC)

= 130

AIC < 130 AIC > 130

Dark/ Light Image 
Classification
+ Dark Area 
Adjustment

(*) Adjust pixel of dark areas (for each array):
• In dark images: Pixel (Pixel< 130-X)= Mean Pixel Value- 100
• In light images: Pixel (Pixel< 180-X)= Mean Pixel Value– 50

X: Feature Adjustment Value (to be determined – see next)

(*)                                 (*)

Feature Enhancement flow chart
 Adjust dark areas (low pixel intensity values) to make ASR defects more 

apparent from the background

AIC represents the average intensities of the colour image

Phase II- Refinements using Image Processing Techniques
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Result - Best FE:
 Parametric study: X= [60÷160] →
 Best FE option: 

• X=150, highest VA = 92.48%
• +1.59% from original result

90.90%

92.01%
92.48%

91.31% 91.21%

90.07%

88.84%

85%

86%

87%

88%

89%

90%

91%

92%

93%

94%

Original data FE_160 FE_150 FE_120 FE_100 FE_80 FE_60

Va
lid

at
io

n 
ac

cu
ra

cy

Scenarios

Performance of Feature Enhancement Scenarios

Performance of Feature Enhancement Scenarios with InceptionV3

(C1) A clear crack image, adjustment is unrecogniseable
(C2) A crack image with heavy texture background
(B1) A base images with local dark area

FE Scenarios and Validation Accuracy results

Phase II- Refinements using Image Processing Techniques
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Result - FE+ Texture Analysis (TA):
 FE + Texture morphology/ Local Range Filtering/ Adaptive Thresholding

Base Images after Processed by 
FE+Texture Analysis

Original

FE+Texture 
Morphology
FE+Local 
Range Filtering
FE+Adaptive 
Threshold

Crack Images after Processed by 
FE+Texture Analysis

Phase II- Refinements using Image Processing Techniques
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Result - FE+ TA vs TA only:
 TA only: Texture morphology improved VA to 

92.38% (+1.59%), while the other two TAs 
reduced VA by -1.25% & -2.11%
 FE + TA: FE helps to improve VA of all three 

TAs
• Best IPTs: FE+ Texture Morphology, VA=94.07% 

(+3.17% from original 90.9%)
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Phase II- Refinements using Image Processing Techniques
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3. Application to underground sewer structures:
Result of two object detection models
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Research aim/highlights:  
 Increase efficiency in review of sewer 

inspection CCTV data (through 
automation)
 Improved accuracy and reliability of 

fault detection (→ direct economic and 
qualitative benefit to industry)

Background on Sewer Network:  
 Complex systems of pipes, manholes 

and associated infrastructure (to convey 
wastewater from the property junction 
to a treatment facility)
 Common damage/defects (faults) are 

shown, we start with Crack (important), 
then expand to Root and Deposit

Project Background

(note: some pipe information has been deidentified)
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Creation of Labelled Image 
Datasets:
 Labelling done directly on CCTV footage
 Image splitting done autonomously from 

the video using a predetermined 
sampling rate n
 Train/Validation/Test proportion: 

70/10/20 (%)
 Image conversion
 Image augmentation

Project Background

(note: some pipe information has been deidentified)
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Framework of Model Development and Assessment

YOLOv2, 
YOLOv5, 
SSD, etc.

DarkNet19, 
ResNet50, 
ResNet101, and
MobileNet-v1 
(MB1)
most recently
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1. Large models for conventional  
AI computing system:
 Target computing systems: Nvidia DGX 

system, Google Colab, etc.
 FEN: best CNN=ResNet101 with MBS = 32, 

MaxEpochs=30 (from CNN, etc. analyses)
 ODM: YOLOv2

2. Computationally efficient/small 
models for embedded computing 
systems:
 Target computing systems: BrainChip

devices, or those from Google/Nvidia
 FEN: MB1 (MobileNet-v1)
 ODM: SSD (Single Shot Detection) 
 Effective Distribution of Workers

Architectures of Fault Object Detection Models

Source: www.nvidia.com

FEN

ODM

Source: www.brainchip.com

https://www.nvidia.com/en-au/data-center/dgx-station-a100/
https://www.nvidia.com/en-au/data-center/dgx-station-a100/
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Framework of Model Development and Assessment

Evaluation Metrics
• Precision – ability to detect correctly classify positive ground 

truth data
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =

𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃

• Recall – ability to detect positive ground truth data

𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹

• Average Precision (AP) – ability to find all relevant objects 
and the ability to detect objects correctly

𝐴𝐴𝑃𝑃 = �
𝑘𝑘=0

𝑘𝑘=𝑛𝑛−1

[𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 𝑘𝑘 − 𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 𝑘𝑘 + 1 ] × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘)

• Mean Average Precision (mAP) - the average of APs of faults in 
multi-fault object detection process

Example of Precision-Recall Curve (YOLOv2 Model)
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Results of Object Detection using Large Model
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Results of Object Detection using Small Model

 Using a new way of distributing workers (16), we can use a larger MBS e.g. 16 
or 32 which significantly improve AP and mAP. 
 Below are some of our recent initial outcome: results by embedded systems

are well comparable to those by the large systems

 Detail developments and final result will be reported in our upcoming 
publication



Conclusion
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Our research have:
 Found useful way of using IPTs to boost the performance of CNN 

when dealing with complicated backgrounds of images 

 Successfully developed two object detection models for two 
different AI computing platforms (conventional vs. embedded 
system)
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