

Smart Condition Assessment of Bridges and Underground Structures using Image Data and Deep Learning

Dr Andy Nguyen, School of Engineering Research Lab: Monitoring & Infrastructure Technologies (MIT) November 2022 I. Introduction to smart condition assessment

- 2. Application to bridge ASR damage: Overcoming the challenge of complicated image backgrounds
- Application to underground sewer pipe defects: Result of two object detection models

4. Conclusion

1. Introduction to Smart Condition Assessment

Condition Assessment Overview

Main assessment approaches for ageing civil infrastructure:

- Health monitoring methods (i.e. using continuous automated measurements of structural response and/or loading over a period)
- Condition assessment methods (<u>our focus today</u>)

Traditional condition assessment:

- How: Use of trained inspectors
- + decision-making criteria (e.g. condition rating)
- Pros: Established, intuitive
- Cons: Time-consuming, laborious
- + sometimes dangerous

Cable-stayed bridge health monitoring with one permanent accelerometer shown (joint research with Sharry, Guan, Oh and Hoang)

Smart condition assessment:

- <u>How</u>: use of remote cameras (to capture image data)
 + AI deep learning/image processing techniques (for feature recognition, extraction and classification)
- Pros: \rightarrow fast, affordable and safe features offered by computer vision system
- <u>Cons</u>: still new → requiring time for full development
 + knowledge transfer

Source of figures: Application of artificial intelligence on assessing surface damage of concrete bridges (Courtesy of Luong and Ngo, 2022)

Hierarchy of Smart Condition Assessment

03 common levels:

- Level 1: Detecting the occurrence of damage/defect through image classification, e.g., most CNNs can do this
- Level 2: Locating damage through object detection (i.e. damaged region recognition) e.g., R-CNN, faster R-CNN and YOLO
- Level 3: Assessing more detail damage characteristics (e.g. severity) through semantic segmentation, i.e. working at the pixel level for precise interpretation of the geometrical space around objects, *e.g.*, *U*-*Net*, *Mask R-CNN*

Sources of some Figures: Luong and Ngo (2022) and joint work with Khuc et al. (2022)

Challenging inspection photos from Queensland bridges

Current Status of Smart Condition Assessment

Achievements:

- Attracted numerous high-quality studies in all these three levels...
- ...partly because of recent rapid advancement in image acquisition and AI computing technologies

Challenges & research need:

- Most existing assessment models were developed using images with clear damage/defects
 - C1: More research is needed for real-world image datasets i.e. with increased complexities
- Most existing assessment models were developed for deployment onto powerful/sever-/cloud-based AI computing machines
 - C2: More research is needed for emerging mobile/ embedded systems for real-time implementations

Image acquisition using UAV (Luong and Ngo, 2022)

2. Application to bridge ASR damage: Overcoming the challenge of complicated image backgrounds

Project Background

Research significance/highlights:

- ASR: destructive phenomenon known as `concrete cancer'
- Timely detection of ASR cracks ensure long-term durability, structural integrity for civil structures
- ASR damage is heavily affected by texture backgrounds, causing CNN evaluation confusion
- First time ASR damage detection is tackled by AI vision

Creation of Image Dataset:

- Use 35 inspection photos (ranging from 800x600 to 5184x3888 pixels), cropped to 256x256 patches to suit most CNNs and retain image quality
- Final dataset has 1706 images (609 with ASR defect)

Original Inspection Photos Taken from ASR Affected Bridges in Queensland

Example of an 800×1067 Photo Cropped to 256×256 Patches

Image Dataset

Damage detection framework

Phase I- Use of Pre-trained models

- Selected 3 representative CNN models based on our previous study (Nguyen *et al.*, 2022)
- InceptionV3 found the best performing CNN to deal with ASR damage

12

Feature Enhancement flow chart

Adjust dark areas (low pixel intensity values) to make ASR defects more apparent from the background
Classification

Phase II- Refinements using Image Processing Techniques

Result - Best FE:

- Parametric study: $X = [60 \div 160] \rightarrow$
- Best FE option:
 - X=150, highest VA = 92.48%
 - +1.59% from original result

Performance of Feature Enhancement Scenarios with InceptionV3

FE Scenarios and Validation Accuracy results

Feature enhancement scenarios	FE_160	FE_150	FE_120	FE_100	FE_80	FE_60
Feature adjustment value (x)	160	150	120	100	80	60
Condition dark (darker images)	0	0	10	30	50	70
Condition dark (lighter images)	20	30	60	80	100	120
Percentage of Crack image adjusted	17.1%	23.7%	58.4%	77.8%	92.7%	98.9%
Percentage of Base image adjusted	5.3%	7.5%	28.6%	53.8%	74.4%	89.5%
Validation accuracy with InceptionV3	92.01%	92.48%	91.31%	91.21%	90.07%	88.84%

(C1) A clear crack image, adjustment is unrecogniseable
(C2) A crack image with heavy texture background
(B1) A base images with local dark area

Result - FE+ Texture Analysis (TA):

FE + Texture morphology/ Local Range Filtering/ Adaptive Thresholding

Crack Images after Processed by FE+Texture Analysis

FE+Texture Morphology FE+Local Range Filtering FE+Adaptive Threshold

Base Images after Processed by FE+Texture Analysis

Phase II- Refinements using Image Processing Techniques

Result - FE+ TA vs TA only:

- TA only: Texture morphology improved VA to 92.38% (+1.59%), while the other two TAs reduced VA by -1.25% & -2.11%
- FE + TA: FE helps to improve VA of all three TAs
 - **Best IPTs:** FE+ Texture Morphology, VA=94.07% (+3.17% from original 90.9%)

Performance Assessment criteria	Original	FE_150	FE & Texture Morphology	FE & Local Range Filtering	FE & Adaptive Thresholding	
Validation accuracy	90.90%	92.48	94.07%	91.23%	90.37%	
Compared to Original	0%	1.58%	3.17%	0.33%	-0.53%	
Compared to FE_150	-	0%	1.59%	-1.25%	-2.11%	
F1-score	0.904	0.921	0.937	0.906	0.901	
Overfitting	Negligible	Negligible	Negligible Negligible		Negligible	

3. Application to underground sewer structures: Result of two object detection models

Project Background

Research aim/highlights:

- Increase efficiency in review of sewer inspection CCTV data (through automation)
- Improved accuracy and reliability of fault detection (→ direct economic and qualitative benefit to industry)

Background on Sewer Network:

- Complex systems of pipes, manholes and associated infrastructure (to convey wastewater from the property junction to a treatment facility)
- Common damage/defects (faults) are shown, we start with Crack (important), then expand to Root and Deposit

(note: some pipe information has been deidentified)

Project Background

Creation of Labelled Image Datasets:

- Labelling done directly on CCTV footage
- Image splitting done autonomously from the video using a predetermined sampling rate n
- Train/Validation/Test proportion: 70/10/20 (%)
- Image conversion
- Image augmentation

AUGMENTATION DATASET

- For stimulating the real life conditions, dataset has been augmented with
 - Random flip (vertical and horizontal)
- Colour Jitter (contrast, hue)

0

Example of Dataset Augmentations

Framework of Model Development and Assessment

Model development & evaluation methodology

Flow Diagram of Smart Sewer Detection Model

Architectures of Fault Object Detection Models

Smart Sewer Detection Model Pre-Processina FEN Feature Extraction Network **ODM** Object Detection Model Performance

Assessment

1. Large models for conventional AI computing system:

- Target computing systems: Nvidia DGX system, Google Colab, etc.
- FEN: best CNN=ResNet101 with MBS = 32, MaxEpochs=30 (from CNN, etc. analyses)
- ODM: YOLOv2

2. Computationally efficient/small models for embedded computing systems:

- Target computing systems: BrainChip devices, or those from Google/Nvidia
- FEN: MB1 (MobileNet-v1)
- ODM: SSD (Single Shot Detection)
- Effective Distribution of Workers

Source: www.brainchip.com

Framework of Model Development and Assessment

Example of Precision-Recall Curve (YOLOv2 Model)

Evaluation Metrics

Precision – ability to detect correctly classify positive ground truth data

$$Precision = \frac{TP}{TP + FP}$$

• **Recall** – ability to detect positive ground truth data

$$Recall = \frac{TP}{TP + FN}$$

• Average Precision (AP) – ability to find all relevant objects and the ability to detect objects correctly

$$AP = \sum_{k=0}^{k=n-1} [Recall(k) - Recall(k+1)] \times Precision(k)$$

• Mean Average Precision (mAP) - the average of APs of faults in multi-fault object detection process

Results of Object Detection using Large Model

Smart Sewer Detection Model – Multiclass Analysis								
	m A D							
Crack	Deposit	Root Intrusion	mar					
77.5%	96.3%	94.8%	89.3%					

Table 4.8: Multiclass Object Detection Results

Precision-Recall Curve: 'Cracking' Defects

Results of Object Detection using Small Model

- Using a new way of distributing workers (16), we can use a larger MBS e.g. 16 or 32 which significantly improve AP and mAP.
- Below are some of our recent initial outcome: results by embedded systems are well comparable to those by the large systems

3 Classes (Crack – Deposit – Root) by Embeded AI system					Mean			Std			
Net	MBS	LearningRate	Workers	Epoch	AP Crack	AP Deposit	AP Root	mAP	AP Crack	AP Deposit	AP Root
mb1-ssd	8	0.01	2	30	0.764	0.865	0.893	0.841	0.011	0.017	0.004
mb1-ssd	16	0.01	16	100	Result still under Analysis						
mb1-ssd	32	0.01	16	100	0.827	0.883	0.899	0.870	0.006	0.006	0.001
			•								
3 Classes (Crack – Deposit – Root) by Conventional AI system						Ме	an			Std	
Net	MBS	LearningRate	Workers	Epoch	AP Crack	AP Deposit	AP Root	mAP	AP Crack	AP Deposit	AP Root
mb1-ssd	8	0.01	2	30	0.775	0.860	0.887	0.841	0.010	0.026	0.012
mb1-ssd	16	0.01	16	100	0.853	0.887	0.901	0.880	0.006	0.005	0.001
mb1-ssd	32	0.01	16	100	0.831	0.877	0.899	0.869	0.005	0.008	0.001

 Detail developments and final result will be reported in our upcoming publication

Our research have:

- Found useful way of using IPTs to boost the performance of CNN when dealing with complicated backgrounds of images
- Successfully developed two object detection models for two different AI computing platforms (conventional vs. embedded system)

Jniversity of

UniSQ colleagues (J. Brown, T. Le, R. Perera, T. Low)

- UniSQ students (L. Sterling, K. Sharpe) and research assistants (L. Nguyen, V.R. Gharehbaghi)
- External collaborators (S. Crawford, C. Luong, T. Khuc, etc.) and industry organisations that supplied image/video datasets for these studies

<u>niversitvo</u>

Thanks for your attentions!

Questions?

For more information, contact

Andy.Nguyen@usq.edu.au T +61.7.34704711

CRICOS QLD 00244B NSW 02225M | TEQSA PRV 12081