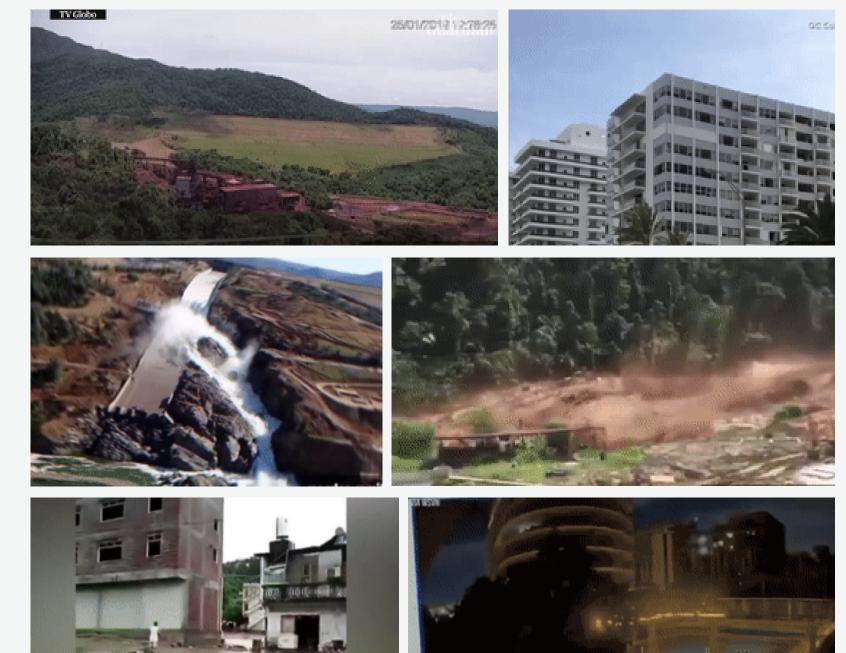
Using Low Cost GNSS Data and Machine Learning to Measure and Monitor Long-term Surface Displacement


Presented by

Prof. Tommy H. T. Chan & Mr Shane Frischkorn
Queensland University of Technology (QUT)
I4th ANSHM Workshop, 24-25 Nov 2022, Sydney

– why remote monitoring?

We face constant & invisible pressure

Automated monitoring and analytics for settlements of geotechnical structures using Internet of GNSS Things

GNSS-IoT Sensor	GNSS-IoT Service Platform	GNSS Data Processing	SHM in Settlement	Business Model
 Affordable Compact & low power Hardware design with suitable technologies Configurable remotely Security Reliability Intelligence through additional sensing 	 SaaS architecture Device management User management Data management and visualization Data analytics Device operation control 	 GNSS data manipulation and QC Automated processing campaign creation and execution Service platform integration with log, status and results Advance GNSS ML algorithm 	 Settlement prediction from GNSS and geotechnical data ML-based stratigraphic correlation to predict settlement between sensor locations Back analysis to improve geotechnical data accuracy 	

kurloo

End to End displacement solution

Fully autonomous

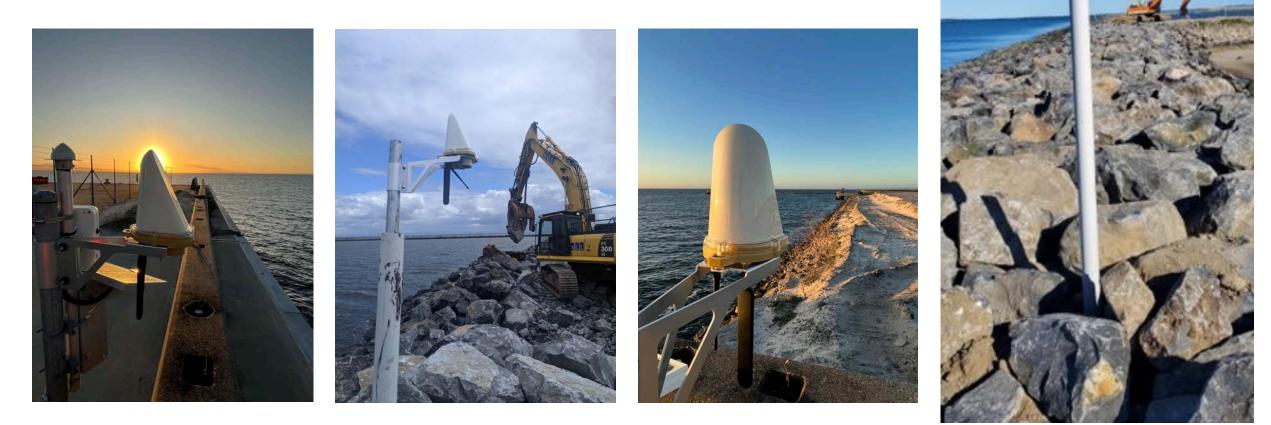
Daily mm positioning

Solar powered

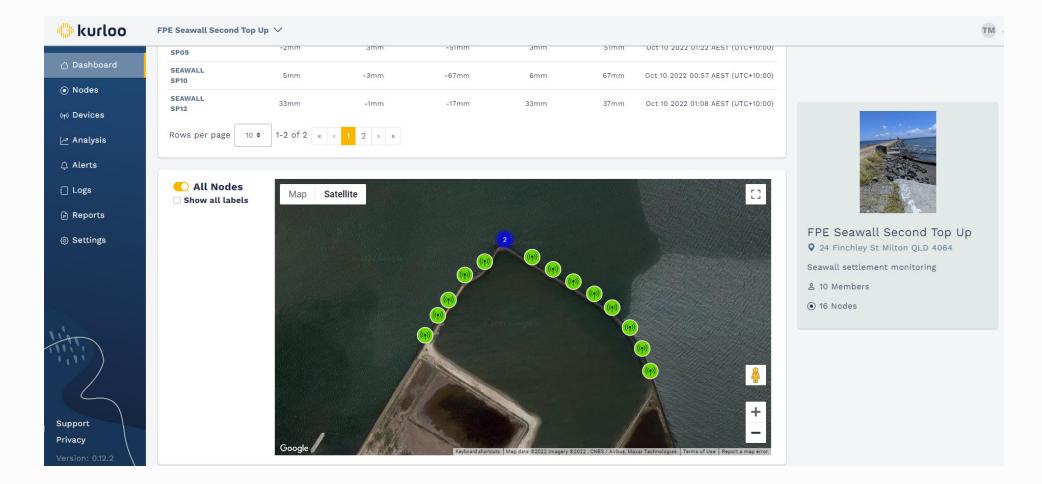
Cloud processing

Web based analysis software

kurloo



5 of 27



6 of 27

Kurloo Nest

settlement: land reclamation

Port Of Brisbane - C2 Paddock V

🛆 Dashboard

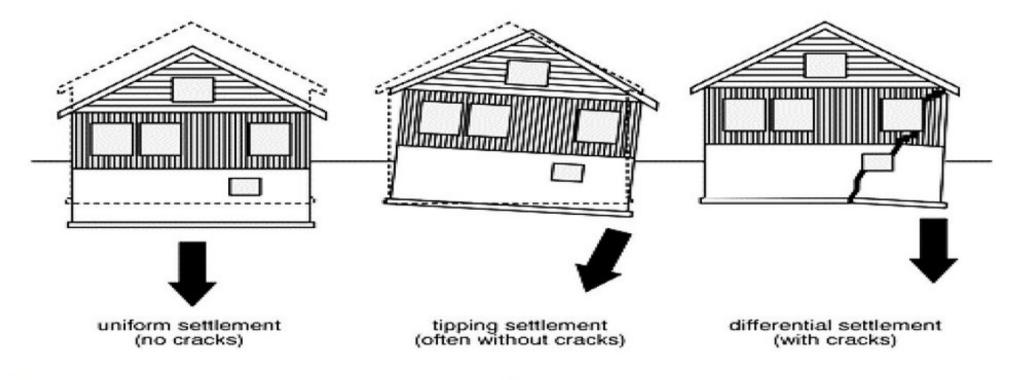
Nodes (Devices

Reports

Settings

Support Privacy

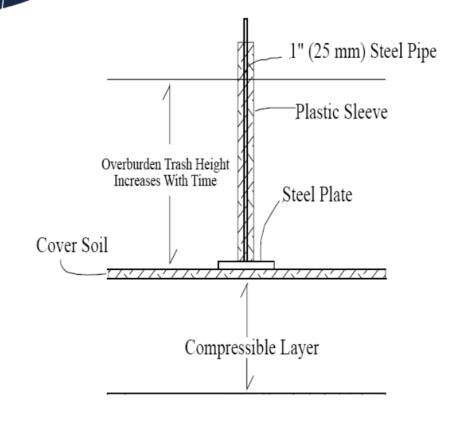
Using GNSS Data and Machine Learning for Settlement Monitoring



Settlement Importance

Figure 1 - Effects of Settlement on a Building

Source: American Society of Home Inspectors (ASHI)



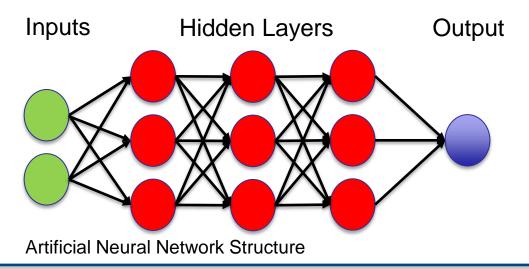
Measuring Settlement

(Minnesota Department of Transportation, 2017)

Measuring Settlement with GNSS

- Prior work
 - Davarpanah et al. (2016) used GNSS for monitoring tunnel induced settlement
 - Results comparable to expected results from numerical modelling
 - Not compared with survey measurements
 - Ganas et al. (2016) measured regional subsidence but only achieved vertical accuracy of ~20mm
 - Khomsin et al. (2019) processed GPS, GLONASS, and BeiDou signals simultaneously and achieved accuracies of 6mm vertically

Knowledge gap: Can GNSS data be used successfully to monitor settlement?



Settlement Prediction

Machine Learning Methods

- Learn from existing data, and continually improve as new data is acquired
- Agnostic methods, does not have explicit knowledge about problem space
- Can use various algorithms e.g.:
 - Neural network
 - Decision tree
 - Bayesian network

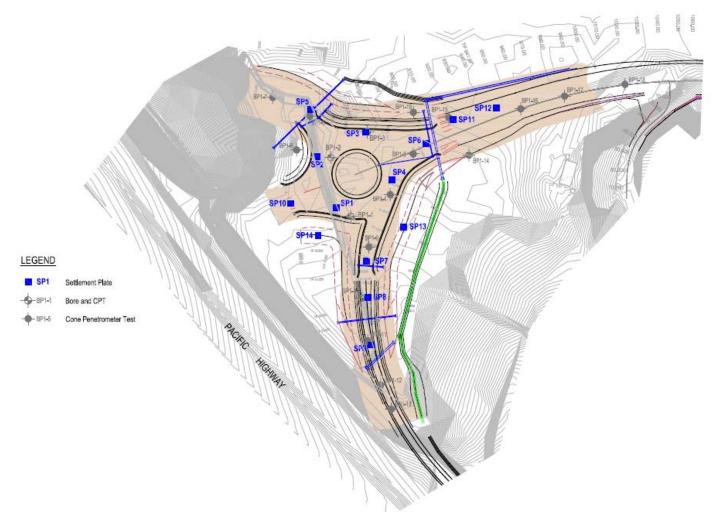
Settlement Prediction

- Machine Learning Advantages
 - Does not require assumptions
 - Does not require explicit knowledge
 - Can easily be run on different sites with settlement problems
- Disadvantages
 - Dependent on the data it is

trained on

- Does not answer the question of why?, only what?

This Photo by Unknown Author is licensed under <u>CC BY-SA-NC</u>



14 of 27

Input Variables

Anonymised settlement project map

Data Always Collected - Borehole

- Borehole Data:
 - Location -

Bore

BP1-1

BP1-1

BP1-1

Stratigraphy (soil layer interface depth) -

USCS

CH

SC

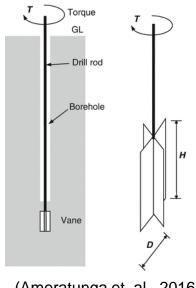
CL

VSS

8

16

28


- Soil/Lithological classification (USCS) -
- Vane shear strength (kPa) -

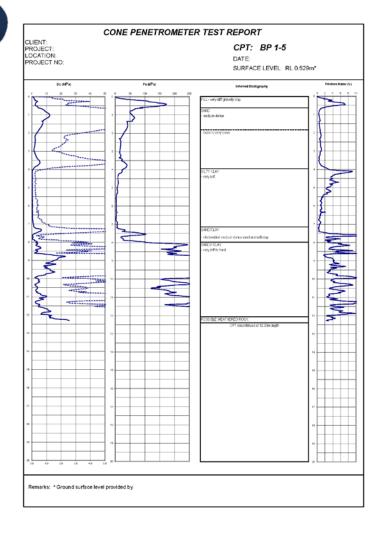
Depth

3.8

6.8

8.3

(Ameratunga et. al., 2016)



Data Always Collected – CPT/SPT

		<u>ID</u>	<u>Depth</u>	<u>Cone</u> Resistance
	<u>0</u>	<u>BP1-1</u>	-0.003	<u>-0.272</u>
Digitised cone resistance data	<u>1</u>	<u>BP1-1</u>	<u>0.0348</u>	<u>0.135</u>
5	<u>2</u>	<u>BP1-1</u>	<u>0.0786</u>	<u>0.544</u>
	<u>3</u>	<u>BP1-1</u>	<u>0.0831</u>	<u>0.585</u>
	<u>4</u>	<u>BP1-1</u>	<u>0.0861</u>	<u>0.612</u>
		<u>ID</u>	<u>Depth</u>	<u>Sleeve</u>
				Friction
	<u>0</u>	<u>BP1-1</u>	<u>0.0008</u>	<u>3.83</u>
Digitised sleeve friction data	<u>1</u>	<u>BP1-1</u>	<u>0.1766</u>	<u>18.77</u>
Digitised sleeve metion data	<u>2</u>	<u>BP1-1</u>	<u>0.3323</u>	<u>45.25</u>
	<u>3</u>	<u>BP1-1</u>	<u>0.4444</u>	<u>60.72</u>
	<u>4</u>	<u>BP1-1</u>	<u>0.5542</u>	<u>54.17</u>
		ID	Depth	n <mark>FR</mark>
	<u>0</u>	<u>BP1-1</u>	<u>0.01</u>	<u>27</u> <u>1.4613</u>
Digitised friction ratio data	<u>1</u>	<u>BP1-1</u>	<u>0.03</u>	<u>22</u> <u>1.5987</u>
Digiliood motion ratio data	<u>2</u>	<u>BP1-1</u>	<u>0.08</u>	<u>77</u> <u>1.0248</u>
	<u>3</u>	<u>BP1-1</u>	<u>0.15</u>	<u>65</u> <u>0.9003</u>
			0.20	0 5 2 9 0
	<u>4</u>	<u>BP1-1</u>	0.30	<u>95</u> 0.5389
	ID	Start	End St	ratigraphy
	ID <u>BP1-1</u>	Start	End St <u>0.8</u> Fil	ratigraphy
Digitised inferred stratigraphy	ID <u>BP1-1</u> <u>BP1-1</u>	Start <u>0</u> <u>0.8</u>	End St 0.8 Fil 1.25 Fil	ratigraphy
Digitised inferred stratigraphy	ID <u>BP1-1</u>	Start	End St 0.8 Fil 1.25 Fil 2.4 Sa	ratigraphy

Optional Inputs

Pre-load height at settlement plate locations

Rainfall data

 Can be sourced from the BOM, or from a locally installed rain gauge if necessary

Tipping bucket rain gauge (Acharya, 2017)

Challenges with Using Geotechnical Data

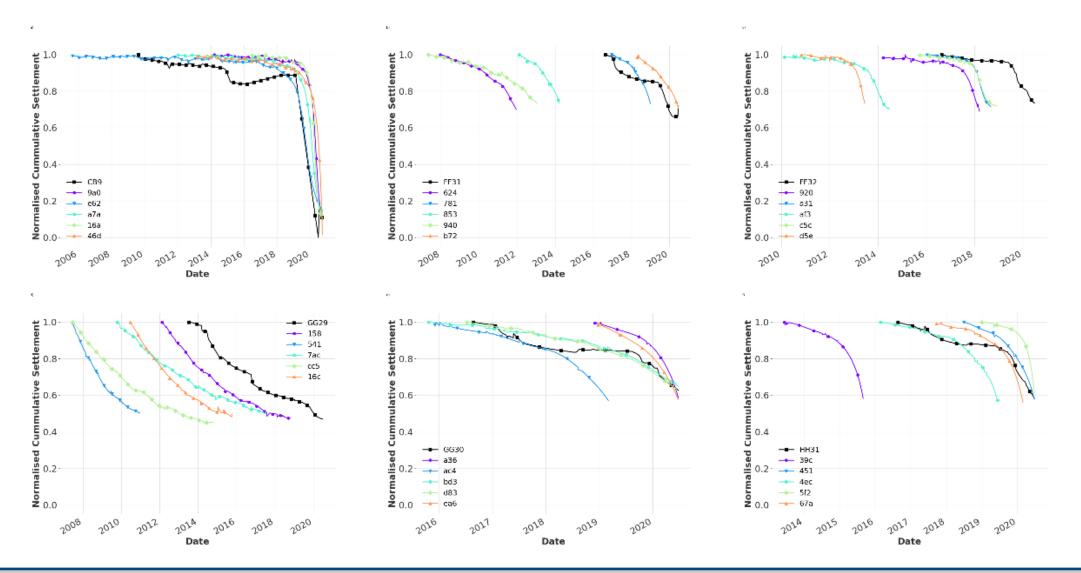
Averaged Input Data:

Input tensor y:

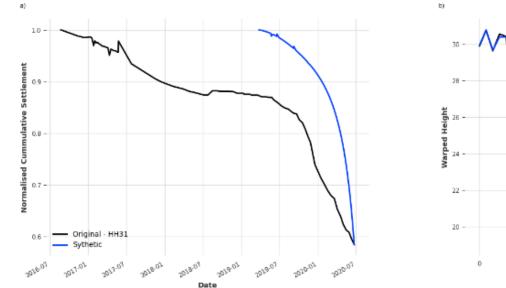
Settlement P	Plate Soil Layer	Start Depth	End Depth	Friction Ratio	Local friction	Pore pressure	Tip resistance	Settlement Amount	Settlement Time
CB9	1	0.0000	0.0662	0.2224	0.7170	0.0000	0.7478	5.293	11.11780822
	2	0.0662	0.1766	0.7781	0.6759	0.1174	0.5386		
	3	0.1766	0.2097	0.6244	0.3204	0.1263	0.1206		
	4	0.2097	1.0000	0.4730	0.2585	1.0000	0.1315		
FF31	1	0.0000	0.0883	0.1993	0.9530	0.0021	1.0000	1.662	3.835616438
	2	0.0883	0.1479	0.4379	0.6597	0.0757	0.6121		
	3	0.1479	0.2053	1.0000	0.1466	0.3013	0.0280		
	4	0.2053	0.8698	0.5330	0.3119	0.8909	0.1214		

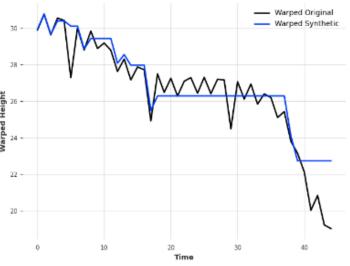
Input tensor X:

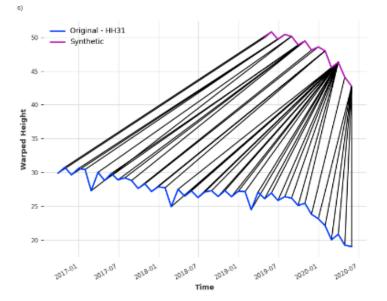
Settlement	Start	Start	Start	Start	End	End	End	End	Friction	Friction	Friction	Friction	Local	Local	Local	Local	Pore	Pore	Pore	Pore	Tip	Тір	Тір	Tip
Plate	Depth 1	Depth 2	Depth 3	Depth 4	Depth 1	Depth 2	Depth 3	Depth 4	Ratio 1	Ratio 2	Ratio 3	Ratio 4	friction 1	friction 2	friction 3	friction 4	pressure 1	pressure 2	pressure 3	pressure 4	resistance 1	resistance 2	resistance 3	resistance 4
CB9	0.0000	0.0662	0.1766	0.2097	0.0662	0.1766	0.2097	1.0000	0.2224	0.7781	0.6244	0.4730	0.7170	0.6759	0.3204	0.2585	0.0000	0.1174	0.1263	1.0000	0.7478	0.5386	0.1206	0.1315
FF31	0.0000	0.0883	0.1479	0.2053	0.0883	0.1479	0.2053	0.8698	0.1993	0.4379	1.0000	0.5330	0.9530	0.6597	0.1466	0.3119	0.0021	0.0757	0.3013	0.8909	1.0000	0.6121	0.0280	0.1214



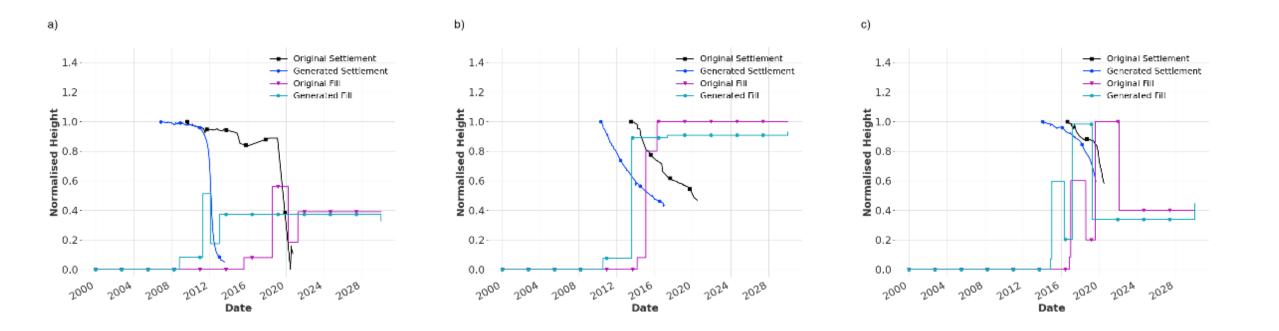
Lack of Data



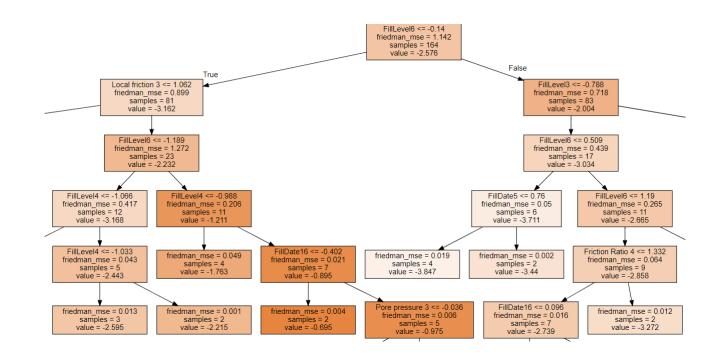




Synthetic Data – Dynamic Time Warping



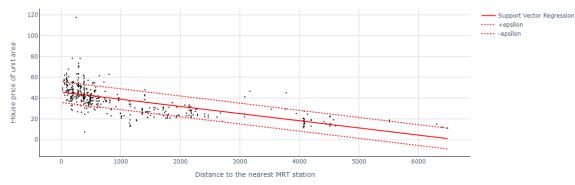
Synthetic Data



Determining the best model

		Amount	Time				
	Single DT	Single SVR	Joint SVR	Single SVR	Joint SVR		
MAPE	0.248648058	0.161120357	0.165235751	0.132609274	0.138715022		
R2	0.885905768	0.866717378	0.868439693	0.840630768	0.836172834		

1 de



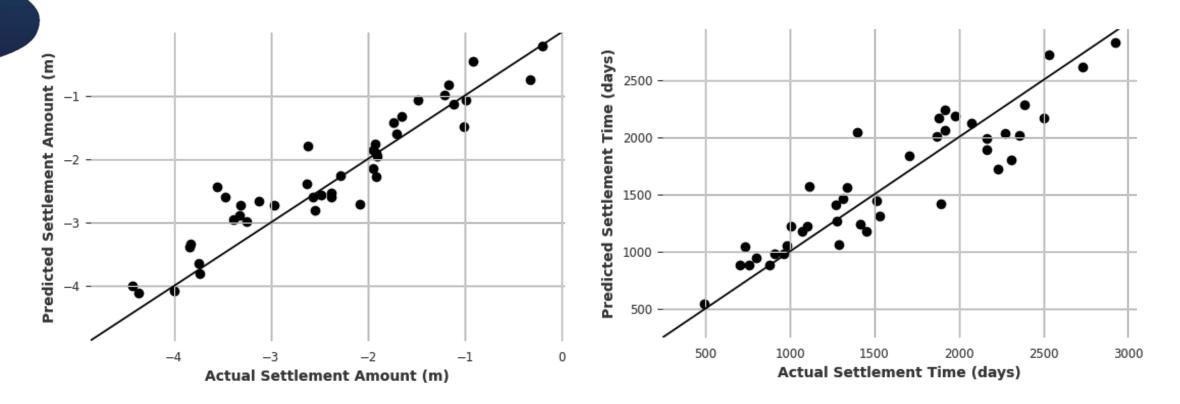
SVR Overview

120 Support Vector Regression +epsilon ----- -epsilon 100 JUIT 80 F ā ۰. 1000 2000 3000 4000 5000 6000 Distance to the nearest MRT station

House Price Based on Distance from the Nearest MRT with Model Predictions (epsilon=10, C=1)

House Price Based on Distance from the Nearest MRT with Model Predictions (linear)

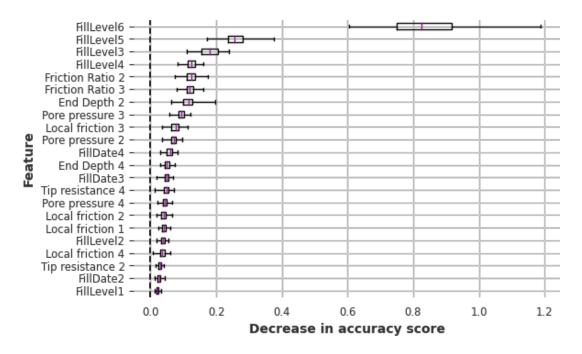
House Price Based on Distance from the Nearest MRT with Model Predictions (epsilon=10, C=1000)

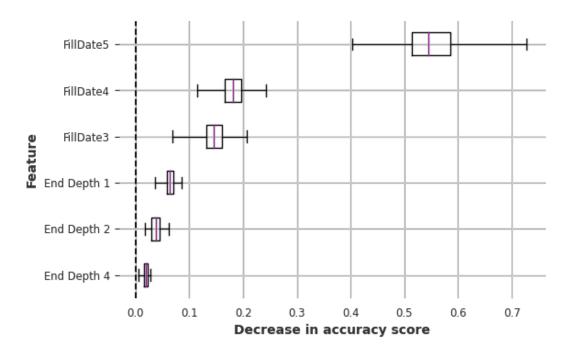


Settlement Prediction Results

Settlement amount prediction vs actual settlement

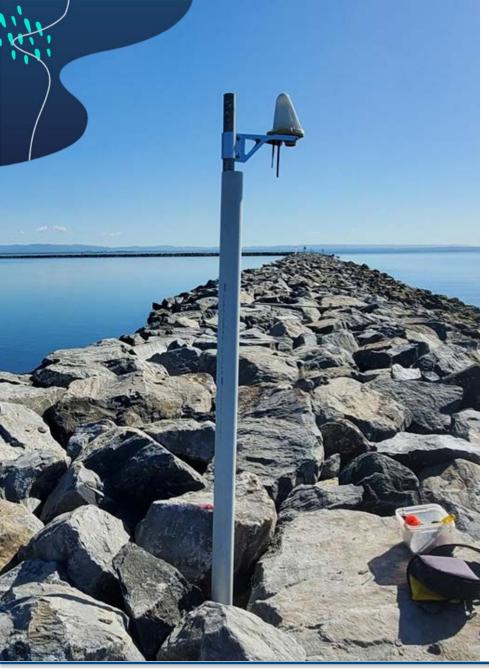
MAPE: 0.165 r²: 0.868 Settlement time prediction vs actual settlement time MAPE: 0.139 r²: 0.836





Feature Importance

Most Important features for predicting settlement amount


Most Important features for predicting settlement time

Future Work

QUT the university for the real world

