

Infrastructure Anomaly Detection and Failure Prediction

-An Imbalanced Data Problem

A/Prof Yang Wang

Nov 2022

Data Driven Solutions for Infrastructure and Asset Management

3

Help asset and infrastructure owners identify and predict asset behavior, reduce future risk, optimize their performance through data analytics and machine learning.

Infrastructure Anomaly & Failure

- Imbalanced data problem

Water Main Failure Prediction

Water Main Failure Prediction

 Pipe failure prediction based on learning from historical failure records and attributes related to failure.

- Multiple factors (20+)
- Diverse failure patterns
- Sparse failure data (1%)
- Incomplete dataset
- Long term prediction with confidence estimation

Innovative Solutions Novelty

 Our novel data-driven failure prediction solution is based on nonparametric learning models and non-homogenous stochastic process model

Non-parametric learning

- Avoid strong assumptions on model structure
- Complexity growing with the data observations
- Consider all the available factors
- Model spatial connectivity

Non-homogenous stochastic point process-based statistical model (interaction point process)

- A generic and adaptable tool for modelling series of events (e.g./ pipe failures).
- Trigger intensity is determined by previous failures.

*Intensity: Expected number of events (pipe failures) at time points.

O Triggered event

Hierachical Beta Process

 Top level: network to pipe groups Group failure patterns

 $q_k \sim \text{Beta}(c_0 q_0, c_0 (1 - q_0))$, where k = 1, ..., K

• Middle level: pipe group to individual pipes Pipe failure probabilities

 $\pi_{k,i}$ ~Beta $(c_k q_k, c_k (1 - q_k))$, where $i = 1, ..., n_k$

 Bottom level: Individual pipe to failure observations

Failure observations over years

 $z_{k,i,j} \sim \text{Ber}(\pi_{k,i})$, where $j = 1, ..., m_{k,i}$

C₀

N

Water Main Failure Prediction

Structural Health Monitoring

- Problems:
 - Aging structure: monitor structural integrity of 800 steel and concrete jack arch supports (joints) under bridge deck
 - Current practice: visual inspection every 2 years and difficult access
- Needs:
 - Damage detection: time-based → conditionbased monitoring
 - Monitor every one of 800 joints: efficient and reliable data management and analysis techniques

Damage Identification Techniques

- Model-driven vs data-driven approach
 - Numerical model may not be available or accurate, may not cater well to variation in environmental and operational conditions.
 - Data-driven approach establishes a model from data, using machine learning techniques.

Our approach using machine learning

- Data corresponding to damage are often not available: a benchmark model is built using only healthy data.
- New data not conforming with trained model are considered as damage.

Machine Learning Flowchart

Structural health monitoring of SHB

- System: data acquisition system + data analytics + user dashboard
- Real-time and condition-based monitoring
- Data-driven machine learning technique for damage detection

Sydney Harbour Bridge Lane 7

Track Inspection Process

Footer

1. MTP vehicles inspecting the track

- Whole network
 inspection every 2
 weeks
- Captures images via easement, track and rail cameras

Inspection Data

- Content:
 - Inspection images
 - Image GPS positions
- Data for this project:
- 3 inspections:
- 7 sessions for city circle
- Each inspection has about 2M images/3.5TB

- 2. Inspectors reviewing images back in the office
- One inspector reviewing 30-40 km/day on average
- Identify points of interest (POIs) for on-ground inspection and repair

POI Data

- Content:
- POI table
- POI images
- Data for this project:
- Total POIs: 243,031
- Defects (POIs with external ID): 3,270
- POI images: 64,403
- Defect images: 13,562
- Data size: about 10GB

14

- 3. On-ground inspection and repair
- On-ground technicians performs further inspection and repair

Different Types of Clip Defects

Missing clip

Missing clip

Missing clip

Missing clip

Loose clip

Broken clip

Machine Learning System for Defect Detection

Detecting Missing Clips on 03/10/2018 Inspection

* On average, 3 to 4 ROIs correspond to 1 unique clip as the clip might be captured multiple times on inspection images.

Thank you

Data-driven Approaches

