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Risk in new constructions and ageing infrastructure

Risks in new design, new
construction technologies,
behavior understanding of new
structural forms and materials

Risks in aged bridges in the
regular maintenance and
inspection to cater for the growing
traffic demand with the decreasing
load carrying capacity

1. Background
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 Bridge safety are essential for society and community
 Maintenance for ageing infrastructure is important and could be expensive

The Morandi bridge tragedy killed 43 and left 600 
homeless – but also dealt a hammer blow to 
Italy’s engineering legacy. The Guardian. (2018)

Total collapse of Nanfang'ao Bridge in Taiwan, in 2019, caused
4 dead and 10 injured. 
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Civil engineering structures & AI & Big data

https://www.frontiersin.org/research-
topics/16803/machine-learning-methods-and-big-data-
analytics-in-structural-health-monitoring#overview
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 Time consuming and
costly (Chase and
Edwards 2011, Sanford et
al.1999)

 Subjective and not always
reliable (Phares et al.
2004, Moore et al. 2001)

 Hard to conduct the
assessment of
inaccessible part of the
structure

 Not allowing rapid and
quantitative based
decision regarding repairs
(Metni and Hamel 2007)

 Require lane closure
and traffic control
measure

 Traffic control and 
access unit consume 
40-50% of the budget 
and mobilization of 
inspection units need 
40-50% of the overall 
time (Highway IDEA 
project, Choset 2000)

Bridge Inspection
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 As the bridges age and continue to 
deteriorate, not updating the traditional 
inspection methods pose a risk to the traveling 
public and a nations economic viability.
 Needs to reduce lane closures and traffic 

disruptions, and dangers to personnel.
 Non-Contact vision and image based 

techniques can provide cost effective methods 
for bridge inspection
 Vibration displacement responses can be 

used to assess the health condition and 
serviceability of bridges

Needs to develop cost effective methods

Target based or Target free? 
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Artificial targets on structures required
(a) Vision Based Method

• Digital image correlation (DIC) techniques are used;
• Vibration measurements under significant 

vibrations;
• Environmental conditions, artificial lights may also 

be required.  Ribeiro et al. 2014, ES, 75: 164-180.

2 Vison sensing and AI techniques for SHM
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 Using structural natural features and component textures 

Target-free Computer Vision Based Method

Yoon et al. 2016, SCHM, 23: 1405-1416.

• Displacement measurements under uni-
axial vibrations 

• Accuracy affected by the used consumer 
grade cameras and frame rate 
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• 3D measurement

• Most vision based methods focus 
on 1D or 2D displacement 
measurement;

• In-plane measurement accuracy 
is sensitive to out-of-plane motion;

• Accuracy of 3D vibration 
displacement measurement is a 
significant challenge 
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• A camera angle between 20º and 30º is 
ideal;

• Speckle patter with white spray paint 
base and black permanent marker dots;

• Out-of-plane movement at 6.38mm –
4.70mm;

Beberniss and Ehrhardt, MSSP, 2017
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Cameras with depth 
sensing capabilities
markers used
640*480@30fps
Abdelbarr et al., SMS, 2017
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Motion magnification for vibration measurement
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Challenges in vision-based 3D displacement measurement
1. 3D displacement measurement
• Only 2D displacement can be obtained by a single camera
• Depth direction displacement measurement is difficult
2. Subtle displacement (less than 1mm level) measurement
• Difficult to measure by traditional sensors owning to uncertainties
• Leading to image features tracking and matching failure
• Motion magnification only applicable to 1D or 2D with a camera
3. Target-free displacement measurement
• Need hundreds pairs of matched key points to properly calibrate    

stereo cameras. 
• The accuracy of triangulation algorithm will be impacted by wrong 

matched features
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Machine learning

 Explores the study and construction of algorithms that can learn from and 
make predictions on data

 Operates by building a model from example inputs in order to make data-
driven predictions or decisions, rather than following strictly static program 
instructions.

CNN, RNN, Artificial Neural Network, Genetic Algorithms, Support Vector 
Machines, Clustering, Sparse Dictionary Learning, Decision Tree, Transfer 
learning, GAN,… 

(b) AI in SHM
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Bao et al. 2019, SHM, 18(2): 401-421.

Data abnormality detection
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Cha et al. 2017

Crack detection
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Dung and Anh, Automation in Construction 2019
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Damage type detection

Xu et al. 2019, SCHM, 19, e2313.
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Pathirage, et al., 2018, ES, 172: 13-28. 

Structural damage identification
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Response modelling and prediction

Zhang et al., 2019, Computers and Structures, 220: 55-68. 
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3.1 Methodology 
 Apply videogrammetry technology on civil engineering to capture the 3D movement 

of civil structures using two cameras without any artificial targets
 Videogrammetry is a measurement technology in which the 3D coordinates of points 

on an object are determined by two or more videos taken from different angles

24

3. Target-free vision based displacement measurement
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Flowchart
Raw videoRaw Video

Calibration parameters

Undistorted video Undistorted video
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Features

ROI Matched Features ROI Matched Features
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Feature Detection
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Camera Stereo Calibration

An object in the world coordinate is 
converted to the image coordinate by a 
camera matrix.

 To estimate the conversion factor from pixel to engineering unit, i.e. mm
 To estimate the camera matrixes of two cameras
 To remove the radial distortion of lens



Curtin University is a trademark of Curtin University of Technology
CRICOS Provider Code 00301J

Traditional methods:
 SIFT: Lowe G. SIFT-the scale invariant feature transform[J]. Int. J, 

2004.
 SURF: Bay H, Tuytelaars T, Van Gool L. Surf: Speeded up robust features, 

2006.

 KAZE: Alcantarilla P F, Bartoli A, Davison A J. KAZE features, 2012.

In This Research:
 Super point: DeTone D, Malisiewicz T, Rabinovich A. Superpoint: Self-

supervised interest point detection and description[C], 2018

Traditional 
Computer Vision

Deep Learning 
based feature 
detection

Feature Detection
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Feature Detection
 A self-supervised framework for training interest point detectors and 

descriptors suitable for many multiple-view geometry problems in 
computer vision.
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Feature Matching
 Super glue: Sarlin P E, DeTone D, Malisiewicz T, et al. Superglue: Learning 

feature matching with graph neural networks[C], 2020.
 a neural network that matches two sets of key points by jointly finding 

correspondences and rejecting non-matchable points. 
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Feature Tracking
 Kanade-Lucas-Tomasi (KLT) optical flow tracker is applied to traverse each 

frame of the stereo videos to find the matched key points.
Lucas B D, Kanade T. An iterative image registration technique with an application to stereo vision[J]. 
1981.
Tomasi C, Kanade T. Detection and tracking of point features[J]. 1991.
Shi J. Good features to track[C]//1994 Proceedings of IEEE conference on computer vision and pattern 
recognition. IEEE, 1994: 593-600. 

(Image Courtesy: Wikipedia article on Optical Flow)

http://en.wikipedia.org/wiki/Optical_flow
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Triangulation
 Compute the position of a point in 3D space given its image in two views and the 

camera matrices of those views. 
Hartley, R. and A. Zisserman. “Multiple View Geometry in Computer Vision.” Cambridge University 
Press, 2003
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relatively large movement

Camera 
1

Structure

1640mm 1573mm

X

Y

Z

24°

Video Resolution: 1920×1080@50 frame rate
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Subtle 3D Displacement obtained with Motion Magnification

Camera 
1

Camera 
2

Structure

1760mm1808mm

X

Y

Z

15°

Video Resolution: 
1920×1080@50 frame rate
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Vibration displacement in Z-direction
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Vibration displacement in Z-direction: ZOOM IN
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Accelerometer
Accelerometer

Accelerometer
Acceleromete
r

Shaker 
Indoor pedestrian bridge

3.3. Application to a real engineering structure
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Camera 1Camera 2

Structure

Camera 1

Structure

Cameras2

Indoor Pedestrian bridge
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33.6°
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Z
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Video Resolution: 1920×1080@50 frame rate
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Motion magnification for subtle vibration measurement
49
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Indoor Pedestrian bridge

AccelerometerVision method

Vibration Displacement Vibration Acceleration
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 Developed a novel and accurate Target-Free 3D vision based approach for 
measuring vibration displacement measurement
 Deep learning techniques based feature detection and matching 
 3D subtle vibration displacement measurement through motion 

magnification 
 Can achieve an accuracy level of less than 0.1 mm
 Generally more challenging in obtaining the exact vibration displacement in 

depth direction from images/videos 
 More investigations on the effect of distance and angle between cameras are 

ongoing 

Concluding remarks 
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 SegGAN consists of a bottlenecked generator and a segment-based discriminator
 Trained through an adversarial process
 Can capture both low-frequency (vibrational characteristics) and high-frequency 

structure (shifts of amplitude or instantaneous frequencies change) of data
 DenseNet with strong capability on feature extraction is used as generator

Dense 2 Dense 3 

(64×1024)

Input 
(n×1024)

CoNv + ReLU + ShufflingConv + ReLU Skip connection

…

Output
(1×1024)

Low-level

Dense 1 

(64×512) (128×256) (256×128)

R 2 R 1 

Final

(128×256)(64×512)(2×512)

Conv + ReLU Conv + Shuffling

4 Generative Adversarial Networks (GAN) for Response Reconstruction

Architecture of DenseNet

Segment based GAN
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 Discriminator is a fully stacked CNN
 Aims to provide additional loss 

gradients to the generator for 
reinforcing high-frequency data 
structure learning
 conditioned input

C1: Conv + ReLu
(k = 64, ks = 4, s = 2)

C2: Conv + ReLu
(k = 128, ks = 4, s = 2)

C3: Conv + ReLu
(k = 256, ks = 4, s = 2)

C4: Conv + ReLu
(k = 512, ks = 4, s = 2)

Available + True

True labelFake label
…0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1…

C5: Conv + Sigmoid
(k = 1, ks = 4, s = 2)

Conditioned discriminator

 output of segment-based discriminator is 
an array contains scalars ranging from 0 
to 1 (output of traditional GAN is a single 
number)

Architecture of segment-based 
discriminator with conditioned input
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 Objective of SegGAN is to maximize the ‘truth’ of a reconstructed response 
through a discriminative training framework
 Trained supervised

Objective of SegGAN

arg min
𝐺𝐺

max
𝐷𝐷

𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝔼𝔼𝑎𝑎,𝑡𝑡[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑎𝑎, 𝑡𝑡 ] + 𝔼𝔼𝑎𝑎[log(1 − 𝐷𝐷(𝑎𝑎,𝐺𝐺(𝑎𝑎)))]

Try to allocate a large 
value for true data

Try to allocate a small value 
for reconstructed data

 MSE loss has strong capability on learning low-frequency data features

𝐿𝐿𝑁𝑁−𝑀𝑀𝑀𝑀𝑀𝑀 = �
𝑘𝑘=1

𝑛𝑛 �(𝑡𝑡𝑘𝑘 − 𝐺𝐺 𝑎𝑎𝑘𝑘
2

𝑡𝑡𝑘𝑘2

The target of the generator becomes producing responses to treat discriminator, 
meanwhile, to be close to the true responses in an MSE sense 
The final objective function for the generator is expressed

𝐿𝐿𝐺𝐺 = arg min
𝐺𝐺

max
𝐷𝐷

𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝜆𝜆𝜆𝜆𝑁𝑁−𝑀𝑀𝑀𝑀𝑀𝑀
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Use ambient response for training and 
earthquake response for testing

Numerical validation 
with a frame 
structure

Training data: 
ambient 

excitation

Testing data: 
earthquake 
excitation
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 Results are compared  with a traditional CNN and DenseNet
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Reconstruction errors

Comparison of true and reconstruction responses

Training of SegGAN is more efficient

Reconstructed Response by 
SegGAN is more accurate



Curtin University is a trademark of Curtin University of Technology
CRICOS Provider Code 00301J

 The first story is assumed to have a nonlinear 
property following a Bouc-Wen hysteretic model

 Only 3 earthquake responses are used for training 
and 1 used for testing
 Top sensor become unavailable when testing

Numerical validation with a nonlinear building model

𝑚𝑚𝑢̈𝑢 𝑡𝑡 + 𝑐𝑐𝑢̇𝑢 𝑡𝑡 + 𝑓𝑓𝑁𝑁𝑁𝑁 𝑢𝑢 𝑡𝑡 , 𝑡𝑡 = 𝑓𝑓 𝑡𝑡

Testing setup
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 SegGAN outperform other two 
networks
 SegGAN is more capable for 

extracting local changes than 
DenseNet
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Experimental validation

 A seven-story frame structure
 Ambient response is used for training and earthquake 

response is used for testing

Testing setup

Testing results
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 Loss of SegGAN is lower and without overfitting
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 SegGAN performs better than DenseNet in 
reconstructing amplitude of responses contributing to the 
involved discriminator
 CNN is unable to extract the detail information of 

earthquake response and reconstructs response with 
averaging amplitudes

Comparison of true and reconstructed earthquake responses

Reconstruction errors
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 A SegGAN is proposed for reconstructing response under extreme loadings
 With efficient and accurate feature extraction, SegGAN outperforms the other 

two networks and produces distinguished reconstruction results in both time 
and frequency domains
 SegGAN in these studies effectively and automatically extracts linear and 

nonlinear response features from limited training data with measurement noise 
and varying environmental and operational conditions
 The advantages of less data requirement, complex environmental adaptability 

and automation leading this method applicable for real applications

Conclusion and discussions
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5. Novel big data analytics for condition monitoring
 Challenges in vibration-based structural damage detection

Dynamic structural system

Mass

Stiffness

Damping

Boundary condition

Input (external excitation)

Acceleration

Displacement 

Strain

Environmental variables

Ambient excitation

Wind load

Earthquake excitation

Operating load, etc.

SHM 
sensors 
network

Excitation 
nonstationary

System 
nonlinearity

Operational 
condition change

Uncertainties, i.e., 
measurement noise

Output (system responses)

Structural 
damage

 Challenge 1: The change in modal parameters due to temperature variation could be contaminated by these induced by a 
medium degree of damage. 

 Challenge 2: Linear theory-based system identification or modal analysis methods might result in biased parameter estimation 
and inaccurate damage detect result due to the excitation nonstationary, noise contamination and system nonlinearity.

identified challenges

Difficult 
to 

measure
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Research Objective

 Objective: to develop reliable damage feature from vibration responses that are sensitive to structural 
damage but insensitive to nonlinear effects, operational condition change and measurement noise.

phase space-based manifold learning method for structural damage detection under changing 
environmental and operational conditions

Highlight: 

• A novel structural damage detection approach under changing environmental conditions.

• The effectiveness and superiority are demonstrated on two real-world structures.

• It is sensitive to structural damage but insensitive to environmental conditions.

• The environmental effects can be efficiently characterized with only partial datasets.
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 Flowchart of the proposed method

n : the n-th order modal frequency. 
𝜆𝜆𝑛𝑛: dimensionless parameter related to boundary constraint 
𝐺𝐺: dimensionless parameter related to geometric structural 
𝐾𝐾 and 𝑀𝑀: stiffness and mass matrices
T: non-uniform temperature distribution along the structure
e: uncertainties caused by measurement noise and 
modelling errors. 

)𝑓𝑓𝑛𝑛 = ℱ𝑛𝑛(𝜆𝜆𝑛𝑛,𝐺𝐺,𝐾𝐾, M

 
  

                 
            

  

 Main contribution & significance
1. In the theory of phase space, the unobservable temperature spatial distribution can be view as a hidden variable, which manifested as a specific 

trajectory or distribution in the phase space spanned by partial observable variables;
2. Manifold learning is an efficient method to extract the inherent nonlinear relationship between modal frequencies and environmental.

Phase space construction by using modal frequencies 

Manifold learning based DSF extraction 

Methodology

Fig.1 An illustrative example of manifold learning

Structural damage detection via phase space based manifold learning under changing 
environmental and operational conditions

Fig.2 Flowchart of the proposed approach for structural damage detection from data 
obtained with varying environmental conditions

𝑓𝑓𝑛𝑛 = ℱ𝑛𝑛 𝜆𝜆𝑛𝑛(𝑇𝑇),𝐺𝐺(𝑇𝑇),𝐾𝐾(𝑇𝑇),𝑀𝑀,𝑇𝑇 + 𝑒𝑒
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Field Application 1: Dowling Hall Footbridge
 17 weeks Continuous Monitoring of the Dowling Hall Footbridge

 
       

  

 two-span continuous steel frame bridge 
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 The first four order modal frequency & air temperature 
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 Effect of live load on frequency 

 The first four order frequencies obviously increased when 
the bridge experienced the lowest temperature. 

 The frequency variations in the first four natural 
frequencies owning to environmental and operational 
effects are 4.18%, 7.02%, 7.34% and 4.16%, respectively.  

 The weekly variation of the mean value of fourth order 
frequency is about 0.3%. 

Fig.3 Overview of the Dowling Hall footbridge

First four natural frequencies during the monitored period 

Fig.4 Air temperature variations during the monitored period 

Fig.5 Effect of live load on natural frequency: (a) weekly RMS variation; (b) weekly 
frequency variation; (c) daily RMS variation; (b) daily frequency variation.
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 2D and 3D phase space reconstruction via frequency observation

 2D phase space

 3D phase 
space

 Overall, the frequency is regularly distributed according to 
the temperature variation. 

 A curve-like topologic structure is observed in a part of 
frequency pair, i.e. 𝑓𝑓1 𝑣𝑣𝑣𝑣 𝑓𝑓2, 𝑓𝑓2 𝑣𝑣𝑣𝑣 𝑓𝑓4 and 𝑓𝑓3 𝑣𝑣𝑣𝑣 𝑓𝑓4. Linear 
relationship is observed in other frequency pairs.

 no distinct outlier cluster is found in the three-dimensional 
phase space.

 A better converged pattern is observed by using Laplacian 
Eigenmaps than that of the Kernel PCA method.

 Manifold structure extracted from 4D phase space to 3D phase 
space

  
(a) (b) 

                 
    

  

Field Application 1: Dowling Hall Footbridge

Fig.6 Visualisation of the relationships between the pairs of the first four natural 
frequencies. (The color bar denotes the environmental temperature)

Fig.7 Visualisation of the nonlinear manifold of the Dowling Hall footbridge in 
the phase space spanned by the first three natural frequencies. 

Fig.8 Manifold structures of the Dowling Hall Footbridge discovered by: (a) Laplacian Eigenmap 
method; (b) Kernel PCA method. (The color bar denotes the environmental temperature)



Curtin University is a trademark of Curtin University of Technology
CRICOS Provider Code 00301J

Field Application 1: Dowling Hall Footbridge
 Condition assessment of the Dowling Hall Footbridge 

        
(a) 

          
(b) 

           
(c) 

                
                    

  

0 500 1000 1500 2000 2500

Samples (hourly)

0

0.05

0.1

D
I

Result of Laplacian Eigenmaps

training dataset

0 500 1000 1500 2000 2500

Samples (hourly)

0

0.05

0.1

D
I

Result of Kernel PCA

training dataset

0 500 1000 1500 2000 2500

Samples (hourly)

0

0.05

0.1

D
I

Result of Kernel PCA

training dataset

 DI of Laplacian Eigenmaps is very stable and remain
at the same level even though the temperature
exceeded the training dataset. Meanwhile, significant
fluctuation is observed in the DI of Kernel PCA at the
samples interval 416 to 449, when the structure
experienced the lowest temperature.

 The false positive alarms appeared in Fig. 9(b) owing
to the extreme cold temperature, which, however, no
longer exist in the results with more training samples
as shown in Fig. 9(c). In addition, the overall amplitude
of DI is also slightly decreased, which means that the
environmental effects can be alleviated by including a
wider range of temperature variations into the training
datasets.

 However, it can be observed that larger damage index
values are obtained for the testing sample, even when
1500 samples are used for training the Kernel PCA
based method. Overall, no damage-induced outlier and
very minor values are observed in the DI results
calculated from the proposed approach, which is
consistent with the ground truth.

 Identification results

Fig.9 DI results of Dowling Hall footbridge: (a) Laplacian Eigenmaps with 400 training 
data; (b) Kernel PCA with 400 samples; and (c) Kernel PCA with 1500 samples.
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Field Application 2: Z24 Bridge
 Nearly one year continuous Monitoring of the Z24 bridge
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 The first five order modal frequency & air temperature 

 Z24 progressive damage test scenarios 

 Generally, the natural frequency is negatively correlated with
the air temperature. Significant frequency fluctuations are
observed in the samples from 1650 to 2300, owning to
stiffness hardening caused by the soil-frozen effects, which is
more obvious than the damage-induced frequency reduction in
the first five natural frequencies;

 The environmental effects induced frequency variations of the
first five natural frequencies under the healthy state are
17.22%, 20.34%, 14.69% 15.34% and 22.09%, respectively.
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Fig.10 The first five natural frequencies during the monitoring period (the 
progressive damage scenarios are denoted by green background color)

Fig.11 Air temperature measurements during the monitoring period 

Table 1. Z24 progressive damage test scenarios [15] 
Sequence Date Description Samples No.  

D0 11-Nov-1997 
to 4-Aug-1998 Baseline state 1~6393 

D1 10-Aug-1998 Settlement of pier, 20mm 6514~6557 
D2 12-Aug-1998 Settlement of pier, 40mm 6572~6671 
D3 17-Aug-1998 Settlement of pier, 80mm 6682~6705 
D4 18-Aug-1998 Settlement of pier, 95mm 6726~6745 
D5 19-Aug-1998 Tilt of foundation 6745~6765 
D6 20-Aug-1998 New Reference Measurement 6769~6788 
D7 25-Aug-1998 Spalling of Concrete (12 m2) 6874~6897 
D8 26-Aug-1998 Spalling of Concrete (24 m2) 6898~6921 
D9 28-Aug-1998 Landslide of 1 m at abutment 6962~6993 
D10 31-Aug-1998 Failure of concrete hinges at abutment pier 7019~7028 
D11 02-Sep-1998 Failure of anchor heads of post tensioning cables (1 head) 7066~7089 
D12 03-Sep-1998 Failure of anchor heads of post tensioning cables (4 heads) 7090~7113 
D13 07-Sep-1998 Rupture of tendons #1 7186~7209 
D14 08-Sep-1998 Rupture of tendons #2 7210~7233 
D15 09-Sep-1998 Rupture of tendons #3 7234~7257 
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Field Application 2: Z24 Bridge
 2D and 3D phase space reconstruction

 2D phase space

 3D phase 
space

 Manifold structure extracted from 5D phase space

  
(a) (b) 

                  
  

   As shown in Fig. 12, the frequency observations corresponding to similar 
temperature conditions are distributed closely with each other

 The distribution of damaged states is overlapped with that of healthy state, 
which means that the 2D phase space spanned by any two of the five order 
frequencies is unable to separate the damage state with healthy state. 

 The second modal frequency 𝑓𝑓2 is nonlinearly (bilinear) related with 
𝑓𝑓1, 𝑓𝑓3,𝑓𝑓4,𝑓𝑓5, while the 𝑓𝑓1, 𝑓𝑓3,𝑓𝑓4 appear to be nearly linearly related with each 
other. The distribution of damage states is well separated with that of the 
undamaged state in the 3D phase space, which means that the classification 
performance of structural condition changes can be improved in a higher 
dimensional observation space. 

 The manifold identified by the Laplacian Eigenmaps is distributed along the 
temperature and convergent than that of Kernel PCA. 

Fig.12 Visualisation of the relationships between any 
two of the first five natural frequencies. (Colored dots: 
the healthy state; Black dots: the damage state). 

Fig.13 Visualisation of the nonlinear manifold of Z24 bridge in 
the phase space spanned by the first three natural frequencies. 

Fig.14 Manifold structures of the Z24 bridge discovered by: (a) Laplacian 
Eigenmap method; and (b) Kernel PCA method. . 
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Field Application 2: Z24 Bridge

 DI is very stable in the healthy states. No visible
false positive alarm is occurred in the sub-zero
and hot temperature.

 DI increased significantly as soon as the
progressive damage scenarios is applied to the
bridge.

 In Fig. 15(b), obvious peak around the sample
2000, when the temperature is cold than the
lowest temperature used in the training data. the
amplitude of false positive DI is at the same or
even higher than that of damaged cases.

 The proposed method outperform most of the
data-driven damage detection methods applied to
Z24 bridge benchmark during in the past decade,

 The proposed method is sensitive to structural
damage while insensitive to operational condition
changes.

 Identification results
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Fig.15 Comparison of damage detection results: (a) The proposed approach with 
training datasets of 1200 samples; (b) Kernel PCA with 1200 samples; and (c) 
Kernel PCA with 3000 samples.
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Swan River Pedestrian Bridge Vibration 
Characteristics and Comfort testing

6 Engineering Applications

73
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Crowds randomly walking on the bridge at Stage 1 test

Pedestrians walking on the bridge at a specific 
pacing rate 74

Pedestrians jumping and running on 
the bridge at a specific pacing rate
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load carrying capacity evaluation & construction induced vibrations monitoring
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7. Conclusions
 Vision based binocular system for 3D vibration displacement measurement, and

tiny 3D displacement responses can be obtained through motion magnification
 Only a single consumer-grade camera is used for displacement measurement

and modal identification of relatively long simply-supported beams, and natural
frequencies and mode shapes can be obtained.
 GAN is first used for dynamic response reconstruction of linear and nonlinear

structures.
 Novel data analytics used for structural condition monitoring under varying

environmental and operational conditions.
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Thank you for your attention and comments! 
Dr. Jun Li, Associate Professor

ARC Future Fellow
Centre for Infrastructure Monitoring and Protection

School of Civil and Mechanical Engineering
Curtin University, Australia

Email: junli@curtin.edu.au
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