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1. Background
Risk in new constructions and ageing infrastructure

math of FIU bridge collapse

B — = R 22  Risks in new design, new

SISl | U

construction technologies,
behavior understanding of new
structural forms and materials

Risks In aged bridges in the
regular maintenance and
inspection to cater for the growing
traffic demand with the decreasing
load carrying capacity
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= Bridge safety are essential for society and community

= Maintenance for ageing infrastructure is important and could be expensive

The Morandi bridge tragedy killed 43 and left 600 Total collapse of !\Ianfang'ao Bridge in Taiwan, in 2019, caused
homeless — but also dealt a hammer blow to 4 dead and 10 injured.
ltaly’s engineering legacy. The Guardian. (2018)
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Civil engineering structures & Al & Big data

Less Risk
& Cost

\ Machine
' Learning

o

https://www.frontiersin.org/research-
topics/16803/machine-learning-methods-and-big-data-

analym,s |g §1mgtu@ly -health-monitoring#overview %

Environmental

Infrastructural
Impact Sustainability



Bridge Inspection

Time consuming and
costly (Chase and
Edwards 2011, Sanford et
al.1999)

Subjective and not always
reliable (Phares et al.
2004, Moore et al. 2001)

Hard to conduct the
assessment of
inaccessible part of the
structure

Not allowing rapid and
quantitative based
decision regarding repairs
(Metni and Hamel 2007)
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» Require lane closure
and traffic control
measure

» Traffic control and
access unit consume
40-50% of the budget
and mobilization of
inspection units need
40-50% of the overall
time (Highway IDEA
project, Choset 2000)
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Needs to develop cost effective methods

= As the bridges age and continue to
deteriorate, not updating the traditional
iInspection methods pose a risk to the traveling
public and a nations economic viability.

= Needs to reduce lane closures and traffic
disruptions, and dangers to personnel.

= Non-Contact vision and image based
techniques can provide cost effective methods
for bridge inspection

= Vibration displacement responses can be
used to assess the health condition and Target based or Target free?

serwceablllty of bridges _ _ _
i Universy . edameof Gt Universy of Techrlogy % Curtin University



2 Vison sensing and Al techniques for SHM
(a) Vision Based Method

Artificial targets on structures required

Alfa Pendular v=172km/h

Target and IR
lightening i ﬂ \ . [” '\
! | | | n
_ ; = |/ ;\. (\ | /’\ lﬂ | W
: . -'_‘ —p- %_1_ | \ || \ | | | \ | \/
Gigabit - 5 \ [ { ! |
) Ethernet :.--..;2 § \} \ / \ / j \JI
aptop =t 24 i\}
] & ARV
. g
J | LVDT
", m k 4 —— Video cam
po S o _ el _7
« Digital image correlation (DIC) techniques are used;
Precision target . . . -
« Vibration measurements under significant
vibrations;
 Environmental conditions, artificial lights may also

Ribsiro et al. 2014, ES, 75: 164-180. be required. =



Target-free Computer Vision Based Method

= Using structural natural features and component textures
2nd story

H e ACCBI.
50 . ey | memom GoPro (120 fps)
= = =LG G3 (30 fps)

o 5 10 15
« Displacement measurements under uni-

axial vibrations
(b) © « Accuracy affected by the used consumer

grade cameras and fralE IR

-Yoon et-al.-2016,-SCKHM, 23: 1405-1416.

CRICOS Provider Code 00301J



3D measurement
Most vision based methods focus

on 1D or 2D displacement
measurement;

principal point
(cx) Cy)

werld coordinate. ®IN-Pl@ane measurement accuracy
Is sensitive to out-of-plane motion;

1st Image ‘ sl
Coordﬁlate (// Iﬁ‘ System
SYSt/Qi],/m ) / f‘l
st Camera : Ly tical axi fr . .
Pl IR ) e | » Accuracy of 3D vibration
‘ y ,’ : _
e f | displacement measurement is a
2" Image | 1 11
s o / significant challenge
System

2" Camera

System
Curtin University

Coordinate

Feng and Feng, ES, 2018



1stBending -90.7 Hz (= 0.38% 2nd Bending -160.3 Hz = 0.27% 3rd Bending -252.5 Hz = 0.24%

4. MAC=0.998 4. MAC=0.991 i MAC=0.996
4th Bending - 374.1 Hz (= 0.16% 5th Bending -4564.1 Hz (= 0.28% 1st Torsion -5436Hz (= 0.19%

\
:
\

rix MAC=0.993 rix MAC=0.955 wix MAC=0.965

6th Bending -657.6 Hz (= 0.16% 8th Bending -8422 Hz ¢ = 0.15% 2nd Torsion -1059.9 Hz = 0.17%

3
H
\

wLa MAC=0.982 vl MAC=0.984 i« MAC=0.938

Left Image

* A camera angle between 20° and 30° is
ideal,;

« Speckle patter with white spray paint
base and black permanent marker dots;

* QOut-of-plane movement at 6.38mm —

- 4.70mm;
S Curtin Universit
Beberniss -and Ehrhardt, MSSP, 2017 %

Right Image




Calibration ) . Displacement
(RGBD alignment) —)| Target Detection —)I Target Tracking —)I Calculation
v (ul,vil) X
u !

RGB image RGB image RGB video ,\/\/\/\/\/\}
,#21

Vv
i D

Depth image Depth image Depth video

U

u+p

Cameras with depth ﬂ ol o
sensing capabilities : '“"-- H
markers used L
640*480@30fps b

Abdelbarr et al., SMS, 2017
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Motion magnification for vibration measurement

Decomposition

L

High-pass residual

Orentation 1
(Quadrature pair)

Scale 1

Scale 2
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(b) () (d) ()

Fig. 1. Motion magnification processing workflow: (a) complex steerable pyramid filters decompose the video into amplitude and phase at different scales,
(b) the decomposed phases are bandpass filtered in frequency, (c) amplitude-weighted smoothing is applied, (d) the bandpassed phases are amplified or

attenuated, and (e) the video is reconstructed | 14].
e Chenetal. (2015), JSV, 345, 58-71. e RSEAAANET

(a) Low-pass residual




Operational Deflection Shapes — Camera Data
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Challenges in vision-based 3D displacement measurement

1. 3D displacement measurement
Only 2D displacement can be obtained by a single camera
Depth direction displacement measurement is difficult

2. Subtle displacement (less than 1mm level) measurement
Difficult to measure by traditional sensors owning to uncertainties
Leading to image features tracking and matching failure
Motion magnification only applicable to 1D or 2D with a camera

3. Target-free displacement measurement
Need hundreds pairs of matched key points to properly calibrate

stereo cameras.

The accuracy of triangulation algorithm will be imp
«matched features




(b) Al in SHM

Machine learning
Explores the study and construction of algorithms that can learn from and
make predictions on data

Operates by building a model from example inputs in order to make data-
driven predictions or decisions, rather than following strictly static program

instructions.

CNN, RNN, Artificial Neural Network, Genetic Algorithms, Support Vector
Machines, Clustering, Sparse Dictionary Learning, Decision Tree, Transfer

learning, GAN,...

Curtin University



Data abnormality detection

i@aw time series signals Image ﬁl?s b.y
; data visualization

Greedy layer-wise
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Bao et al. 2019, SHM, 18(2): 401-421.
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C ra Ck d ete Ctl O n | Training | Testing on new image Reporting

Raw image

Building databank
I

I 'l'rainh'lg set ] lValidaﬂon setl

! ; —: Preprocessing
= » = = =: Training
Training CNN |- = = = = Trained CNN classifier | == Testing
Original image ~ Scanned ( — False-negative — False-positive )

-
S _FP-I

5
- 5
—Oh >
[\ —
N
I_Q“.“O—', > Crack

0.4 0.5

ReLU
SRSC,
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Encoder

Input image

Conv3x3: 64
Conv3x3: 64
Maxpool1

(a) Original image

Conv3x3: 128 Conv3x3: 256
Conv3x3: 128 Conv3x3: 256

Decoder

Conv1x1: 256
Upsampling

Dung and Anh, Automation in Construction 2019

Maxpool2 Conv3x3: 256 DeConv3x3: 256
Maxpool3 DeConv3x3: 256
DeConv3x3: 256
: R Al
~ e LR ~" ~
- ¢ 2k -‘%"-“ﬁ-H\L

(b) Segmented 1image

oy

Upsampling Upsampling
Conv3x3: 128 Conv3x3: 64
Conv3x3: 128 Conv3x3: 64

Label image

Softmax

Curtin University



Damage type detection

RPN Fast R-CNN
(Region Proposal Network) (Fast Region-based CNN)
=SCB+RPM =SCB+FRM

Shared
Region Convolutional
Proposal Base a) Identified damage types: CC, CS, REard RB  (b) Identified damage types: CC, CS and RE
Module (SCB)
(RPM)

Xu et al. 2019, SCHM, 19, e2313.

[Suﬁm?c Log | | Smuoith-Ll ]
|

: [ Classification | | Regression
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Structural damage identification

35 T T T T T T T T

10k -True Damage i
[ IANN (identified)
Sparse Autoencoder Framework (SAF) st L ot rviiod |-
2:' 20 ‘
S
§ 15 B
Sparse % 0 1
. _line: N Sparse S st _
Pre Non-linear Relationship £ L
processing Dimensionality Learning | Output B l- o

Reduction | Vector st !

I ‘10 | | | | | | | |

1 2 3 4 5 6 7 8

I Structural element number
Sparse Autoencoder Based Model |
e e e e e e e e e e e e e e e e - | .
Pathirage, et al., 2018, ES, 172: 13-28.
Layer wise Pre-Training
Layer1 Layer 2 Layer 3 Laver 4 Layer 5
W, [ We W, [ We, [ Ow._, [ W, F W W.. H w,_ W.. H
1—1: IE :12|: 12: :13|: 13: :I4I =4 : :15 =5 :
c’ }’T g1(.f1(5_;)) Elr E{ ngfz(ﬁlr):' E{ E; 33':]”3@2]' ):'; E; E; 3464(531'335 E; E; gs(fs (1_3,{'))

c
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Response modelling and prediction

Structural g . : f . Prediction Performance

Responses : e q features % 01

Qutput Layer g 0.05
MmXnxaq %

S 0

Fc 2 §-0.05 | _ | |
g nodes A
0 10 20 30 40 50
El —Reference
FC1 <= 01
g1 nodes . 3 qg 005
------ ’ i : - TG 5] .

s ..-"’"ﬂl. o § i i %, l.m‘-)'""--.,, o

el G B B TAETGIRINR R 0
(2) 2 i Q
LSTM 2 . Gl =
P2 units 'I']"ﬁ)— E‘
n—| f 4;
Hidden States (1) _ nil) (1) — pil) b i | @
mXnXp, b ¥ =h b ¥, =l ' hf;"i g
¢ '* kS
LSTM 1 ol 2
p1 units hml A

Input Layer e @ @ Time [sec]
MXnXp
Earthquake ]
p features
Records B S

Zhang et al., 2019, Computers and Structures, 220: 55-68.
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3. Target-free vision based displacement measurement
3.1 Methodology

= Apply videogrammetry technology on civil engineering to capture the 3D movement
of civil structures using two cameras without any artificial targets

= Videogrammetry is a measurement technology in which the 3D coordinates of points
on an object are determined by two or more videos taken from different angles

4
% Curtin University



Flowchart wemere camera 2
~ Raw Video  Rawvideo

‘ camera calibration

For subtle movement

‘ Distortion Removement

: Feature Detection

Feature Matching

ROI Area Selection

7

Feature Tracking

Triangulation ‘

' % Curtin University
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Camera Stereo Calibration

To estimate the conversion factor from pixel to engineering unit, i.e. mm

To estimate the camera matrixes of two cameras

To remove the radial distortion of lens

o P world coordinate(3D)

T — -,\ Right camera matrix

PLo & Pr pixel coordinate(2D)

pixel coordinate(2D) / Fundamental matrix |

Image left Ir__nage right

Camera left W\ Cameraright

World
/T_\ coordinate

Camera
coordinate

An object in the world coordinate is
converted to the image coordinate by a

camera matrix. Curtin University



Feature Detection

Traditional methods:

SIFT: Lowe G. SIFT-the scale invariant feature transform[J]. Int. J,

2004. ..

SURF: Bay H, Tuytelaars T, Van Gool L. Surf: Speeded up robust features, }Tradlthnal o

2006. Computer Vision
= KAZE: Alcantarilla P F, Bartoli A, Davison A J. KAZE features, 2012. -
In This Research: Deep Learning
- Super point: DeTone D, Malisiewicz T, Rabinovich A. Superpoint: Self- based feature

supervised interest point detection and description[C], 2018

detection

Curtin University is a trademark of Curtin University of Technology % C u rt-l n U n-IUe rs1 tg
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Feature Detection

= A self-supervised framework for training interest point detectors and

descriptors suitable for many multiple-view geometry problems in

computer vision.

Key Points Pre-Tiraining

Labeled Key
Point Images Base detector

Train
A I

Unlabeled Image

Base detector

Il

Key Points Self-Labeling

Homographic
Adaptation

Pseudo-Ground
Truth Interest Points

Joint Training

Unlabeled Image
SuperPoint Network

ﬁ Y

Warp

Warped Unlabeled
image

w T
- !

SuperPoint Network

Key Point Loss

Descriptor Loss

\
/P

Key Point Loss

[

wversity



Feature Matching

= Super glue: Sarlin P E, DeTone D, Malisiewicz T, et al. Superglue: Learning

feature matching with graph neural networks[C], 2020.

= a neural network that matches two sets of key points by jointly finding
correspondences and rejecting non-matchable points.

_ local ] B
image -
Dairg f% Graph Neural Nﬂ b
T o T
L1 & /'J j
6 " g NEs
— P / / 42
Py -
Detector & Descriptor SuperGIue
Curtn Ur Deep Front-End Deep Middle-End Matcher

strong
matches

)
[

Back-End Optimizer

i Curtin University




Feature Tracking

Kanade-Lucas-Tomasi (KLT) optical flow tracker is applied to traverse each
frame of the stereo videos to find the matched key points.

Lucas B D, Kanade T. An iterative image registration technique with an application to stereo vision[J].
1981.

Tomasi C, Kanade T. Detection and tracking of point features[J]. 1991.

Shi J. Good features to track[C]//1994 Proceedings of IEEE conference on computer vision and pattern
recognition. IEEE, 1994: 593-600.

Rotation of observer Optic flow Optic flow
(3D representation) (2D representation)

NN A NN R R LA
NN P fr s oINS
o R RN NN RN
- TN NN
S pltttttra.c L
= N b
s ! AR EEERES
= N B I T T S
> P A A
Q D N NS |
w AR F A
IR A AR
/G MEERRRR AR R R
-120 0 120

Azimuth (°) Curtin University

(Image Courtesy: Wikipedia article on Optical Flow)



http://en.wikipedia.org/wiki/Optical_flow

Triangulation

= Compute the position of a point in 3D space given its image in two views and the
camera matrices of those views.

Hartley, R. and A. Zisserman. “Multiple View Geometry in Computer Vision.” Cambridge University
Press, 2003

world coordinate(3D)

._ ._ Image right
\ pl -_ pr |
Image left |
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3.2 Laboratory validations
Laser Z

Structur
<4 / e

LVDT X

Y
direction
excitation

N Laser Y

; L] L]
Curtin University is a trademark of Curtin Univ@§ity o 3 C
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relatively large movement

N Sucure

24°
Y A Oe/))
/;
amera
z :

» Video Resolution: 1920x1080@50 frame rate
X
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Vibration displacement in X-direction

xxxxxx

xxxxxxx

111111

11111111

Time(s)
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Vibration displacement in X-direction: ZOOM IN

displacement of X direction

Displacement (mm)
o
I

T T T

10.8

1.2

11.6 12.0 12.4 12.8 13.2 13.6 14.0

% Curtin University
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displacement of Y direction

Vibration displacement in Y-direction

— S ST
—— C\/ Method
1.5 — —
L ﬂ n n g

0.5
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Displacement (mm)

-3 1 1 1 1 1 1 1
o a4 8 12 16 20 24 28 32
Time (s)

Time domain response
T T Time domain response

Displacement (mm)
T
|

Displacement (mm)
T

I I I I
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Time(s)
FFT FFT
1200

Time(s)

1000 | x:2 i 1000 | X: 1.996
Y: 1164
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800

500 L X:0.9982 i

Y:618.6

600 [

200 L Y: 624

Fourier spectrum
A 4

200

0 I JL/L 1 1 I 0 \ml lh . .

0 5 10 15

Fourier spectrum
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Vibration displacement in Y-direction: ZOOM IN

displacement of Y direction
I I I I

0.5

-0.5

Displacement (mm)
[ [
I—__—|—

-1.5

— L aSET

CV method

-3 | | | | | | | | |
10 10.4 10.8 11.2 11.6 12.0 124 12.8 13.2 13.6 14.0

e Curtin Universit
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Vibration displacement in Z-direction: ZOOM IN

— L aSEr ‘

m)

Displacement (m;

. . hl (s)
Time dom. p! me s Time domain res ponse
’é\ —_
H £
b £
£ g
z 3
a a
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]
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2 '
E £ s00 |
= 2
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Vibration displacement in Z-direction: ZOOM IN

displacement of Z direction

Displacement (mm)
o
I —

/\

- <

W

—L2SET

CV method

/\

13.6 14.0
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Subtle 3D Displacement obtained with Motion Magnification

I, St

1808mm 1760mm

Camera Camera

z
1 2
> Video Resolution:
Curtin University is a trademark (50 rrrrrrrrrrrrrrrrr f Tecloggzox 1080 @ 50 fra m e rate
CRICOS Provider Code 00301J
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Vibration displacement in X-direction

The displacement of X direction
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Vibration displacement in X-direction: ZOOM IN

Displacement of X direction
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Vibration displacement in Y-direction

Displacement of Y direction
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Vibration displacement in Y-direction: ZOOM IN
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Vibration displacement in Z-direction

Displacement of Z direction
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Vibration displacement in Z-direction: ZOOM IN
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3.3. Application to a real engineering structure

Indoor pedestrian bridge
Shaker

Accelerometer
Accelerometer

Acceleromete
Accelerometer r




Indoor Pedestrian bridge

Structure

i -
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6.26m

Structure

§ B Camerasg i

Camera 2 Camera 1
Camera 1

v

Video Resc;llution: 1920x1080@50 frame rate

v
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Motion magnification for subtle vibration measurement

Phase based video motion processing (Wadhwa et al. ZOM



Indoor Pedestrian bridge
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Indoor Pedestrian bridge

Acceleration comparison

0.03
I I
0.02 H |
—~ 001 [—
N
Y
£ oL |
c
k]
©
(7]
©
3
< -0.01 | — —
-0.02 | — |
Acceleration from cv method
Acceleration from accelerometer
-0.03 I I I I I I I I I
10.0 10.2 10.4 10.6 10.8 11.0 11.2 11.4 11.6 11.8 20.0

Time (s)

Curtin University is a trademark of Curtin University of Technology % C u r t-l n U n -I U e rS1 t g

CRICOS Provider Code 00301J



Concluding remarks

= Developed a novel and accurate Target-Free 3D vision based approach for
measuring vibration displacement measurement

= Deep learning techniques based feature detection and matching

= 3D subtle vibration displacement measurement through motion
magnification

= Can achieve an accuracy level of less than 0.1 mm

= Generally more challenging in obtaining the exact vibration displacement in
depth direction from images/videos

= More investigations on the effect of distance and angle between cameras are
ongoing

Curtin University is a trademark of Curtin University of Technology % C u r t-l n U n -I U e rs1 t g
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4 Generative Adversarial Networks (GAN) for Response Reconstruction

Segment based GAN
= SegGAN consists of a bottlenecked generator and a segment-based discriminator

= Trained through an adversarial process

= Can capture both low-frequency (vibrational characteristics) and high-frequency
structure (shifts of amplitude or instantaneous frequencies change) of data

= DenseNet with strong capability on feature extraction is used as generator

Latent random variable

Realworld —
images

Sample |

QO

Generator [

&
o,

\

CRICOS Provider Code 00301J

Discriminator

5507

— — —

Input = & S
(nx1024) Low-level # % Final

——*——  Output
Conv + Shuffhng (1 x1 024)

(64x1024) (64x512) (128%x256) (256x128)(128%256)(64%x512)(2%x512)
| ——>» Conv + ReLU z= 4 Skip connection = ---------- » CoNv + ReLU + Shuffling |

Architecture of DenseNet
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Architecture of segment-based
discriminator with conditioned input
Available + True

Conditioned discriminator

Iuln ottt b e g b b ol 4]
I—fﬁwAMWumM\MWW,WW‘WW’MMM/WNW’\MWWW\I

Discriminator is a fully stacked CNN — C1: Conv + Relu

(k=64,ks=4,s=2)

Aims to provide additional loss
gradients to the generator for
reinforcing high-frequency data
structure learning

C2: Conv + Rellu
(k=128,ks=4,s=2)

C3: Conv + Relu

= conditioned input (k=256 ks = 4,5=2)

C4: Conv + Relu

= output of segment-based discriminator is (k=512 k=4, 5=2)

an array contains scalars ranging from O
to 1 (output of traditional GAN is a single
number)

CS5: Conv + Sigmoid
(k=1,ks=4,s=2)

Fake label True label
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Objective of SegGAN

= Objective of SegGAN is to maximize the ‘truth’ of a reconstructed response
through a discriminative training framework

= Trained supervised Try to allocate a large  Try to allocate a small value

value for true data for reconstructed data
argminmax Lseggan = Eqc[logD(a,t)] + Eq[log(l — D(a, G(a)))]

= MSE loss has strong capability on learning low-frequency data features
2
= (t, — G(ay)
LN—MSEZZ . t.2 k)
k=1 K
The target of the generator becomes producing responses to treat discriminator,
meanwhile, to be close to the true responses in an MSE sense

The final objective function for the generator is expressed

L; = arg min max Lg + AL
egGAN N—MSE . . .
Curtin University is a trademark of Curtin University of Technology G D g % C u r t-l n U n -I U e rs1 t g
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when testing
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= Results are compared with a traditional CNN and DenseNet

Training of SegGAN is more efficient
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Numerical validation with a nonlinear building model

Testing setup e 0
3.0m

The first story is assumed to have a nonlinear S @ R
property following a Bouc-Wen hysteretic model 1 3.0m
.o . 3.0m

mii(t) + cu(t) + fur[u(®), t] = f(©) .
Only 3 earthquake responses are used for training O
and 1 used for testing -

Top sensor become unavailable when testing =9
f; 3.0m

Bouc-Wen model > . KB

v

< AR 3.5m

777 T
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Testing results

= SegGAN outperform other two

networks

= SegGAN is more capable for
extracting local changes than
DenseNet

B Time ® Frequency

zg 78.13
70 68.98
< 60
e: 50 44.37 35.00
£ 40
i3
;8 22.18 15.73
10 l .
0
SegGAN DenseNet
Applied network

Reconstruction errors
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Experimental validation

Testing setup
= A seven-story frame structure

= Ambient response is used for training and earthquake |
response is used for testing

Testing results

= Loss of SegGAN is lower and without overfitting
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= SegGAN performs better than DenseNet in Reconstruction errors
reconstructing amplitude of responses contributing to the Thime mheaeney
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Involved discriminator Is 16.87
< 14
= CNN is unable to extract the detail information of g ié
earthquake response and reconstructs response with §
averaging amplitudes " DetseNet | CNN
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Conclusion and discussions

= A SegGAN is proposed for reconstructing response under extreme loadings

= With efficient and accurate feature extraction, SegGAN outperforms the other
two networks and produces distinguished reconstruction results in both time
and frequency domains

= SegGAN in these studies effectively and automatically extracts linear and
nonlinear response features from limited training data with measurement noise
and varying environmental and operational conditions

= The advantages of less data requirement, complex environmental adaptability
and automation leading this method applicable for real applications

Curtin University is a trademark of Curtin University of Technology % C u r t-l n U n -I U e rs1 t g
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5. Novel big data analytics for condition monitoring

= Challenges in vibration-based structural damage dete

Input (external excitation) Dynamic structural system & Output (system responses)

Ambient excitation Mass Acceleration

Wind load Stiffness Displacement

/ Strain
»

Environmental variables

Earthquake excitation Damping

Operating load, etc. Boundary condition

Excitation Operational System Uncertainties, i.g.,
nonstationary condition change nonlinearity measurement noise

identified challenges

= Challenge 1: The change in modal parameters due to temperature variation could be contaminated by these induced by a
medium degree of damage.

= Challenge 2: Linear theory-based system identification or modal analysis methods might result in biased parameter estimation
and inaccurate damage detect result due to the excitation nonstationary, noise contamination and system nonlinearity.

Curtin University is a trademark of Curtin University of Technology % C u r t-l n U n -I U e rS1 t g
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Research Objective

= Obijective: to develop reliable damage feature from vibration responses that are sensitive to structural
damage but insensitive to nonlinear effects, operational condition change and measurement noise.

phase space-based manifold learning method for structural damage detection under changing
environmental and operational conditions

Highlight:

A novel structural damage detection approach under changing environmental conditions.

The effectiveness and superiority are demonstrated on two real-world structures.

It is sensitive to structural damage but insensitive to environmental conditions.

The environmental effects can be efficiently characterized with only partial datasets.

Curtin University is a trademark of Curtin University of Technology % C u r t-l n U n -I U e rs1 t g
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Structural damage detection via phase space based manifold learning under changing
environmental and operational conditions

= Main contribution & significance

1. In the theory of phase space, the unobservable temperature spatial distribution can be view as a hidden variable, which manifested as a specific
trajectory or distribution in the phase space spanned by partial observable variables;

2. Manifold learning is an efficient method to extract the inherent nonlinear relationship between modal frequencies and environmental.

Methodology

Phase space construction by using modal frequencies

= Flowchart of the proposed method

___________________________________

- -

4 \‘I [ Mode 4 ' ‘\'i \=
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n : the n-th order modal frequency. : i NP 1 M S— i i
An: dimensionless parameter related to boundary constraint i % / e / y

. . . ) . Y . .
*«. Long term ambient vibration ...~ *~._.Frequency identification via .-

G: dimensionless parameter related to geometric structural measurement Operational modal analysis

A and M: stiffness and mass matrices
T: non-uniform temperature distribution along the structure
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Fig.2 Flowchart of the proposed approach for structural damage detection from data

R obtained with varying environmental conditions _ ) _
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Field Application 1: Dowling Hall Footbridge

O 17 weeks Continuous Monitoring of the Dowling Hall Footbridge

v two-span continuous steel frame bridge
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Fig.4 Air temperature variations during the monitored period

v’ Effect of live load on frequency
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Fig.5 Effect of live load on natural frequency: (a) weekly RMS variation; (b) weekly
frequency variation; (c) daily RMS variation; (b) daily frequency variation.
The first four order frequencies obviously increased when
the bridge experienced the lowest temperature.

The frequency variations in the first four natural
frequencies owning to environmental and operational

effects are 4.18%, 7.02%, 7.34% and 4.16%, respectively.

The weekly variation of the mean value of fourth order
frequency is about 0.3%.



Field Application 1: Dowling Hall Footbridge

U 2D and 3D phase space reconstruction via frequency observation

48 48 48 v' Manifold structure extracted from 4D phase space to 3D phase
2 space
AT 47 47 Result of Laplacian Eigenmaps Result of Kernel PCA
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Fig.8 Manifold structures of the Dowling Hall Footbridge discovered by: (a) Laplacian Eigenmap
method; (b) Kernel PCA method. (The color bar denotes the environmental temperature)
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Fig.6 Visualisation of the relationships between the pairs of the first four natural
frequencies. (The color bar denotes the environmental temperature)
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Fig.7 Visualisation of the nonlinear manifold of the Dowling Hall footbridge in
the phase space spanned by the first three natural frequencies.




Field Application 1: Dowling Hall Footbridge
O Condition assessment of the Dowling Hall Footbridge
v'Identification results
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Fig.9 Dlrresults-of:Dowling Hall footbridge: (a) Laplacian Eigenmaps with 400 training
data; (b) Kernel PCA with 400 samples; and (c) Kernel PCA with 1500 samples.

DI of Laplacian Eigenmaps is very stable and remain
at the same level even though the temperature
exceeded the training dataset. Meanwhile, significant
fluctuation is observed in the DI of Kernel PCA at the
samples interval 416 to 449, when the structure
experienced the lowest temperature.

The false positive alarms appeared in Fig. 9(b) owing
to the extreme cold temperature, which, however, no
longer exist in the results with more training samples
as shown in Fig. 9(c). In addition, the overall amplitude
of DI is also slightly decreased, which means that the
environmental effects can be alleviated by including a
wider range of temperature variations into the training
datasets.

However, it can be observed that larger damage index
values are obtained for the testing sample, even when
1500 samples are used for training the Kernel PCA
based method. Overall, no damage-induced outlier and
very minor values are observed in the DI results
calculated from the proposed approach, which is
consistent with the ground truth.



Field Application 2: Z24 Bridge

O Nearly one year continuous Monitoring of the Z24 bridge
<
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Fig.10 The first five naturél fréquencies during the monitoring period (the
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v’ Z24 progressive damage test scenarios

Table 1. Z24 progressive damage test scenarios [15]

Sequence Date Description Samples No.
DO t(l)léi-l\j\olrg_-l1999978 Baseline state 1~6393
D1 10-Aug-1998 Settlement of pier, 20mm 6514~6557
D2 12-Aug-1998 Settlement of pier, 40mm 6572~6671
D3 17-Aug-1998 Settlement of pier, 80mm 6682~6705
D4 18-Aug-1998 Settlement of pier, 95mm 6726~6745
D5 19-Aug-1998 Tilt of foundation 6745~6765
D6 20-Aug-1998 New Reference Measurement 6769~6788
D7 25-Aug-1998 Spalling of Concrete (12 m?) 6874~6897
D8 26-Aug-1998 Spalling of Concrete (24 m?) 6898~6921
D9 28-Aug-1998 Landslide of 1 m at abutment 6962~6993

D10 31-Aug-1998 Failure of concrete hinges at abutment pier 7019~7028
D11 02-Sep-1998 Failure of anchor heads of post tensioning cables (1 head) 7066~7089
D12 03-Sep-1998 Failure of anchor heads of post tensioning cables (4 heads)  7090~7113
D13 07-Sep-1998 Rupture of tendons #1 7186~7209
D14 08-Sep-1998 Rupture of tendons #2 7210~7233
D15 09-Sep-1998 Rupture of tendons #3 7234~7257

Generally, the natural frequency is negatively correlated with
the air temperature. Significant frequency fluctuations are
observed in the samples from 1650 to 2300, owning to
stiffness hardening caused by the soil-frozen effects, which is
more obvious than the damage-induced frequency reduction in
the first five natural frequencies;

The environmental effects induced frequency variations of the
first five natural frequencies under the healthy state are
17.22%, 20.34%, 14.69% 15.34% and 22.09%, respectively.
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Fig:13 Visualisation of the nonlifiear manifold of Z24 bridge in
the phase space spanned by the first three natural frequencies.
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Fig.14 Manifold structures of the Z24 bridge discovered by: (a) Laplacian
Eigenmap method; and (b) Kernel PCA method. .

As shown in Fig. 12, the frequency observations corresponding to similar
temperature conditions are distributed closely with each other

The distribution of damaged states is overlapped with that of healthy state,
which means that the 2D phase space spanned by any two of the five order
frequencies is unable to separate the damage state with healthy state.

The second modal frequency f, is nonlinearly (bilinear) related with

fi, 3, fa, f5, while the f3, f5, f, appear to be nearly linearly related with each
other. The distribution of damage states is well separated with that of the
undamaged state in the 3D phase space, which means that the classification
performance of structural condition changes can be improved in a higher
dimensional observation space.

The manifold identified by the Laplacian Eigenmaps is distributed along the
temperature and convergent than that of Kernel PCA.




Field Application 2: Z24 Bridge

v Identification results £ s

T R R = Dl is very stable in the healthy states. No visible
L g false positive alarm is occurred in the sub-zero
oo : %%u and hot temperature.

e ssiimsaaint 35w DI increased  significantly as soon as the
ors | = . progressive damage scenarios is applied to the
o1 | il e bridge.

DI
++

DI

= In Fig. 15(b), obvious peak around the sample
P : : 2000, when the temperature is cold than the
os | .3 lowest temperature used in the training data. the
ST - . - amplitude of false positive DI is at the same or
d — R even higher than that of damaged cases.

0 500 1000 1500 E 20005 2500 3000 3500 : 4000 4500 = 5000

Sumples (houty) = The proposed method outperform most of the
Fig.15 Comparison of damage detectlon results: (a) Thei proposed ap:proach with

training datasets of 1200 samples, (b) Kernel PCA with 1?200 sample:i;s; and (c) data_drlven damage deteCtlon _methOdS applled tO
Kernel PCA with 3000 samples | L P Z24 bridge benchmark during in the past decade,

B = The proposed method is sensitive to structural
W ot oM damage while insensitive to operational condition

Wz :
-10 E E progressive daniage tests E — Ch a n g eS .
1 : [ 1 H 1 . 1
0 1000 I 2000 : 3000 : 4000 i 5000
E E Samples (hourly) E E

oc)

20 |

10 L ' : Al (I8 | [t

Temperature (




6 Engineering Applications
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Hundreds take to Perth's Matagarup Bridge for
engineering test ahead of official opening
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load carrying capacity evaluation & construction induced vibrations monitoring

Tablel. Comparison of the RF results between the original structure and the calibrated bridge model
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7. Conclusions

Vision based binocular system for 3D vibration displacement measurement, and
tiny 3D displacement responses can be obtained through motion magnification

Only a single consumer-grade camera is used for displacement measurement
and modal identification of relatively long simply-supported beams, and natural
frequencies and mode shapes can be obtained.

GAN s first used for dynamic response reconstruction of linear and nonlinear
structures.

Novel data analytics used for structural condition monitoring under varying
environmental and operational conditions.
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Thank you for your attention and comments!

Dr. Jun Li, Associate Professor
ARC Future Fellow
Centre for Infrastructure Monitoring and Protection
School of Civil and Mechanical Engineering
Curtin University, Australia
Email: junli@curtin.edu.au
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