Introduction 000	Open Source	Python 0000000	The Tools	Conclusions

Open Source Software for Structural Monitoring & Assessment

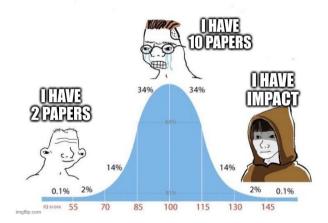
Colin Caprani

Monash University

25 November 2022

Introduction	Open Source	Python	The Tools	Conclusions
●00	00000	0000000	000000000	000000
Contents				

1 Introduction


2 Open Source

3 Python

4 The Tools

. . .

Goals

000

To highlight the route to maximum productivity (research & commercial):

- limitations in conventional thinking
- leveraging existing tools
- opening-up to being open

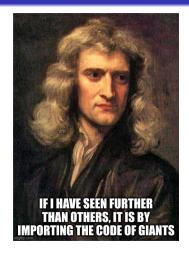
Introduction	Open Source	Python	The Tools	Conclusions
000	●0000	0000000	000000000	000000
Contents				

1 Introduction

3 Python

	The Tools Conclusions
--	-----------------------

. . . .

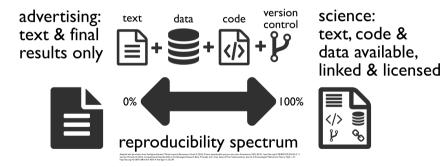


Closed-source proprietary software

Open-source collaborative software Python 0000000 The Tools

Why Open-Source?

- Science is collaborative
- Repeatability
- Maximize impact
- Accelerate progress


Open Science

An article about a computational result is advertising, not scholarship. The actual scholarship is the full software environment, code and data, that produced the result.

Buckheit and Donoho (1995)

Python 0000000

Reproducible Science

Introduction	Open Source	Python	The Tools	Conclusions
000	00000	●000000	0000000000	000000
~				

Contents

1 Introduction

2 Open Source

3 Python

5 Conclusions

oduction	Open Source	Python
D	00000	000000

Why Python?

Python 0000000 The Tools

python matlab

Python is not the best language for anything...but it is the second best language for everything

Michael Kennedy Talk Python To Me

Introduction	Open Source	Python	The Tools	Conclusions
000	00000	000●000	000000000	000000
Simplicity				

In most cases, speed of development is often primary; not always execution speed.

Python is really easy to learn:

- very clean & uncluttered syntax
- enormous range of resources availabe

Introduction	Open Source	Python	The Tools	Conclusions
000	00000	ooooooo	000000000	000000
Interoperability				

Python is a glue:

- \bullet High-level access to low-level libraries in FORTRAN, C, C++, etc
- Chain workflows from DAQ, to data analysis, to webpage dashboards

Ecosystem

Python has libraries for everything

- *Batteries are included* the python standard library
- Largest third-party library ecosystem

Python is a full-spectrum language:

Powerful

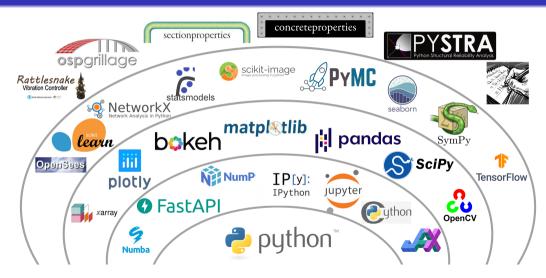
- scripting: A few lines of code, e.g. daily web query
- modules: A collection of functions, e.g. genmcq
- packages: A collection of modules, e.g. ospgrillage
- apps: GUI or web app, e.g. DropBox
- enterprise: Large scale app, e.g. Instagram, FaceBook

Introduction 000	Open Source	Python 0000000	The Tools	Conclusions 000000
6				

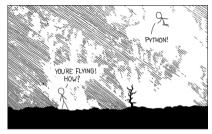
Contents

1 Introduction

3 Python


. . .

imgflip.cor



Introduction 000 Open Source

Python 0000000 The Tools

Basic Tools

- import antigravity: Python has an enormous standard library:
- NumPy: Numerical library, linear algebra, etc.
- **SciPy**: Scientific python, e.g. ODEs, sig proc, etc.
- **Pandas**: Tabular data exploration & manipulation
- Matplotlib: Plotting library with total control
- SymPy: Symbolic computation
- Jupyter-Lab: Notebook interface with code & documentation

Structural Engineering Tools

- Handcalcs: Format calculations as if done by hand using latex
- **OpenSeesPy**: Python wrapper to *OpenSees* finite element analysis
- Anastruct: Plane frame structural analysis

Open Source

- sectionproperties: Calculate properties of arbitrary sections
- concreteproperties: Stress & moment-curvature analysis of concrete sections

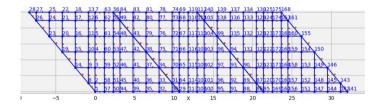
Pvthon

Conclusions

- PyEMA: Experimental Modal Analysis
- **PyFRF**: Frequency Response Functions
- ... many many more

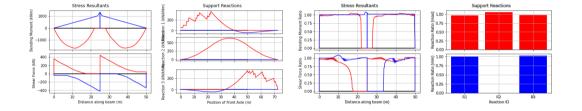
Laboratory Tools

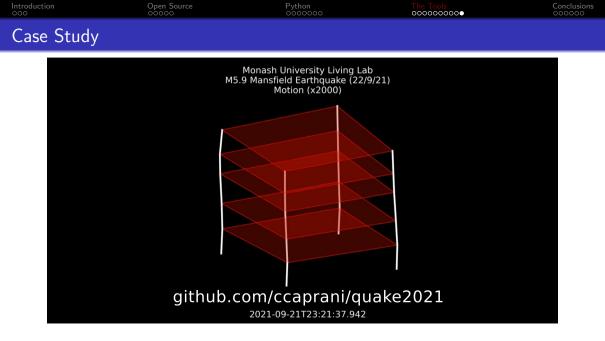
- npTDMS: Read TDMS files created by LabView or NI DAQs
- PyDIC: Digital Image Correlation analysis
- Rattlesnake: Vibration controller by Sandia Labs
- PyExSi: Excitation signals for structural dynamics experiements
- speckle_pattern: Speckle generator for DIC
- ... many many more


Packages from Monash Smart Structures

- ospgrillage: Bridge deck grillage analysis
- PySTRA: Structural reliability analysis (FORM, SORM, etc)
- calabru: Structural model updating (sensitivity & bayesian)
- PyCBA: Continuous beam analysis
- ospgrid: Simple grid analysis (mainly for teaching)
- pyHSI: Human-structure interaction (MF, MM, MSMD in FE, MA)
- ... with more to come

ospgrillage


Capabilities:


- Shell, beam, links
- Oblique, orthogonal, skew
- Multi-span options
- Curved decks
- Point and patch loads
- Moving loads

Ngan & Caprani, (2022). ospgrillage: A bridge deck grillage analysis preprocessor for OpenSeesPy. *Journal of Open Source Software*, 7(77), 4404, 10.21105/joss.04404

Introduction	Open Source	Python	The Tools	Conclusions
000	00000	0000000	000000000	●00000
Contents				

1 Introduction

2 Open Source

3 Python

4 The Tools

Introduction	Open Source	Python	The Tools	Conclusions
000		0000000	000000000	000000

. . .

Opportunity

- Stand on the shoulders of others (often giants!)
- Be at the cutting edge sooner
- Ensure your work has real impact

Github

- Proper version control and code history
- pip: make it easily installable
- github pages: make it easy to use

Acknowledgements

Some ideas here have been borrowed from Jake VanderPlas' PyCon 2017 talk: *The Upexpected Effectiveness of Python in Science*

Introduction 000 Open Sourc

OOOOOOOO

The Tools

Conclusions 000000

Thank you!

