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HealthCare — Human vs Bridge

Ageing

Damage, injuries
Sickness, deterioration
Accidents
Repair/replacement
Cost, budget etc.




Challenges for Asset managers
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SECTION 11: BRIDGE MANAGEMENT ENABLERS

(ganization & People Asset Management Plans Asset Management Systems & Tools

Overview of Bridge Asset Management Framework.



Challenges for Asset managers

The guideline is supposed to

- Link investment and outcomes

- Promote the concept of formally
measuring asset management
performance to differentiate
success from failure

- demonstrate results that illustrate
accountability to customers and
stakeholders

- identify gaps or needs that can
justify funding

Questions are when & how?
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Principles of lifecycle activities that inform bridge assets management



Challenges for Asset Managers

Diagnosis
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Challenges for Engineers/Researchers

* Enormous amount of data from monitoring

* Completely in-balanced data — few or none data from damaged cases

Loading

Warning Zone —

<— Healthy component
action required

<+ Lightly damaged component
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~ o= Moderately damaged component

<«— Severely damaged component

Conditions of bridge
structure/structural components
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Deformation




Challenges for Engineers/Researchers

* Damage detection is NOT deterministic inverse problem

* Operational and Environmental Variability (an example from Farrar, Los Alamos National Laboratory, USA)
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Technological advancement

* Different perspectives on “Solutions” toward SHM problems

— Researchers: define generic problem (often matched with methodology) to
show it works

— Engineers: define specific real problem and develop a solution for it

e SHM dilemma

— Assets owner will not invest SHM technology until it works in real-world
applications.

— Researchers do not get opportunities to develop and demonstrate SHM
technology.

e Solution?



Challenges for Engineers/Researchers

e SHM Chain

e Does SHM has Rol?

* Role of Data analytics
and Machine Learning

e Solution?

The SHM Chain
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Reference: Professor Eleni Chatzi, ETH Ziirich



Bridge HealthCare framework

A

recursive and iterative I
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process - & opportunity



Bridge Healthcare Demo at UTS TechlLab

- Integrated research into current practice

(25
N

Diagnosis and
prognosis

A

recursive and |terat|\fe I
process - & opportunity

™« Healthcare Design
* Healthcare procedure

Benchmarking with

instrumented truck
Monitoring with

crowdsource data
Diagnosis &Prognosis

with instrumented truck
and various tools +
structural engineering
knowledge/experience

Risk & reliability

assessments

Repair and rehabilitation




Examples of Bridge HealthCare research at UTS

Utilisation Vehicle-bridge interaction for structural damage detection -
Saeid Talaei, PhD research project

Impact force localization and reconstruction - Bing zhang, PhD research project

Structural damage detection for the semirigid joint spatial bridge with
wireless measurements - Jiajia Hao, PhD research project

Implementing Transfer Learning for Damage Detection
- Xutong Zhang, PhD research project

Advanced signal processing technique for extracting the time-varying
feature of the VBI system - Mingzhe Gao, PhD research project

Development and Application of Self-sensing Concrete for Structure
Health Monitoring - br Wengui LI, ARC future fellow

Bridge UAV crack detection with deep learning - br Yancheng LI, Senior Lecture

Intelligent Robotics for steel bridges and structures - pist./Prof Dikai Liu, Robotics
Institute, UTS



Utilisation Vehicle-bridge interaction for structural
damage detection - Saeid Talaei, PhD research project

Vehicle-bridge interaction based structural damage
detection

* Excitation force is close to the bridge operational condition

* Gives much more information compared to impact force Vehicle Bridge Interaction Analysis Methods
* Moving vehicle - less sensors * \ehicle Bridge Interaction Analysis can be done by 3 ways:
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Impact force localization and reconstruction

- Bing Zhang, PhD research project

“ Low-rank transfer submatrix based group sparse regularization for impact

force localization and reconstruction

* Discrete expression based on general transfer matnx

Theoretical model aane .t
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< Low-rank transfer submatrix based group sparse regularization for impact

force localization and reconstruction

Experimental validation
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“* Moving force identification via equivalent nodal force based on group

weighted regularization

Group weighted regularization model Oune group weighted matrix W is introduced 10 eliminate the effect of 2er0 entries.
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weighted regularization
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Structural damage detection for the semirigid joint
spatial bridge with wireless measurements
- Jiajia Hao, PhD research project

semi rigid joint model of nonuniform cross section element is developed considering both element and joint stiffness.

Joints are usually simulated as rigid while they are semi
rigid. Failing to consider semi rigid joints leads to low
damage identification results.

N R s T

‘Signal generato

Torsional mode 3

For the damage detection of all damage scenarios, semi rigid joint
.| model outperform the rigid model. Without joint stiffness updating,
damage detection accuracy of spatial structures compromise.




Implementing Transfer Learning for Damage Detection
- Xutong Zhang, PhD research project

Case study: Lumped mass model, single damage case study: sample
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Advanced signal processing technique for extracting the
time-varying feature of the VBI system
- Mingzhe Gao, PhD research project

The proposal of this project is to develop a novel machine learning and signal processing based
algorithm for bridge condition assessment. The detail objectives are as follows

* Vehicle-bridge model Use matlab to make finite element modal to construct model shown as

Figure 1 -
» Synchroextracting Transform (SET): As the same as SST @@@ -
then calculate the estimation IF == .

The final step is energy extraction :

Te(t,w) = Go(t, ) - 5(w — wo(t, w)) 5(0)_@0@,@):{(1)’2;20 Figure 1 vehicle model
. o stream GNN - 2D-CN ok ST T
time-frequency map as input, L &LM LLMLLL e
and 1D-CNN takes FFT spectral B - A
signal as input, and performs mt HHHHH | w H’ 5 }
convolution layer and pooling respectively 5 I S =

Figure 3 the result of 2-stream CNN

Figure 2 SET of acceleration accuracy is 98%

of behicle based on damage bridge

ZUTS



Development and Application of Self-sensing Concrete
for Structure Health Monitoring - br Wengui LI, ARC future fellow
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Development and Application of Self-sensing Concrete
for Structure Health Monitoring - br Wengui LI, ARC future fellow

(a) Conductive rubber
scraps, cut lines and
sliced rubber

In coating form

' State of balance ' State of | mcrease
| |

State of decrease

(c) Sensing behavior of
piezoresistivity under loading
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(d) Typical application for structural health
monitoring

Strain collector Strain gauge Multimeter

(b) Compression machine and multimeter for resistance



Bridge UAV crack detection with deep learning

- Dr Yancheng LI, Senior Lecture

* An integrated system to scan through bridge,
to instantly identify cracks and to display
identified crack in a portable user interface;

* Key features:
O Automated crack detection system;
1 Wireless data transmission;
O Hardware & software interface;
O Possible crack evaluation and prediction?

e Challenges:

O Light DL crack detection algorithm with high efficiency
and accuracy;

A framework for bridge UAV crack detection
J Autonomous crack quant|f|cat|on process,;

O Image enhancement, image chopping, and data fusion;
[ Video-based crack detection;



Bridge UAV crack detection with deep learning

- Dr Yancheng LI, Senior Lecture
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Algorithm architecture: ResNet 101 as backbone with two attention mechanisms
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Models PA MPA MloU FwloU
U-Net 98.28 83.28 77.82 96.82
Dilated FCN 98.16 80.24 75.05 96.69
Deeplabv3 + 98.52 8361 77.94 97.29
PAN 98.38 81.08 75.8 96.69
(AFFNet 98.73 90.78 82.28 97.78 |

FCN: fully convelutional network; AFFMet: attention-based feature
fusion network; PA: pixel accuracy; MPA: mean pixel accuracy; MloU:

mean intersection over union; FWlolU: frequency weighted intersection

over union.

In press with Structural Health Monitoring



Work in progress

* Topic 1: CrackSegFormer- An Efficient vision transformer-based segmentation network for concrete crack
detection (submitted)

Algorithm level: improve the performance of segmentation based vision transformer
e Topic 2: A framework for light DL crack segmentation network
Towards hardware development: executable in cost-effective hardware implementation
* Topic 3: Automated crack quantification process
Practical based: built on CNN, to identify crack length/width, evaluate crack severity and possible prediction..

 Topic4: Hardware & software interface development

Towards implementation: wireless data transmission, hardware selection, code transplantation (FPGA or MCU), user-friendly
interface....

Interest to collaborate? Email: yancheng.li@uts.edu.au;

Supported by SmartCrete CRC
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Intelligent Robotics for steel bridges and structures
- Dist./Prof Dikai Liu, Robotics Institute, UTS

Autonomous robots for steel bridge
maintenance (Industry Partners: RTA of NSW,
SABRE Autonomous Solutions)




Intelligent Robotics for steel bridges and structures
- Dist./Prof Dikai Liu, Robotics Institute, UTS

Bio-inspired autonomous climbing robots Climbing robots for inspection,
for inspection of the Sydney Harbour cleaning, and painting in confined
Bridge (Industry Partners: RMS of NSW) Space (Industry partner: TENSW)

Biologically Inspired Climbing Robot

For Infrastructure Inspection and Condition Assessment

UTS: (&

CENTRE FOR AUTONOMOUS SYSTEMS




Intelligent Robotics for steel bridges and structures
- Dist./Prof Dikai Liu, Robotics Institute, UTS

Underwater robot for bridge/wharf pile Robots for truss structure inspection,

Cleaning and inSpeCtion Cleaning and painting
(Industry Partner: TEPCO, Japan)

(Industry Partner: RMS of NSW)




Summary and Conclusions
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The End of the presentation

Thank you for your attention!
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