Bridge HealthCare -Challenges and Prospects

Professor Jianchun Li

Chair, Structural Dynamics School of Civil and Environmental Engineering, UTS Deputy President of ANSHM

HealthCare – Human vs Bridge

- Ageing
- Damage, injuries
- Sickness, deterioration
- Accidents
- Repair/replacement
- Cost, budget etc.

Challenges for Asset managers

Austroads "Engineering Guideline to Bridge Asset Management", January 2021

- defines best practice asset management for bridges, providing a transparent link between investment and outcomes
- presents a summary of the core asset management elements over the asset lifecycle

Overview of Bridge Asset Management Framework.

Challenges for Asset managers

The guideline is supposed to

- Link investment and outcomes
- Promote the concept of formally measuring asset management performance to differentiate success from failure
- demonstrate results that illustrate accountability to customers and stakeholders
- identify gaps or needs that can justify funding

Questions are when & how?

Principles of lifecycle activities that inform bridge assets management

Challenges for Asset Managers

1 detection 2 location 3 classification 4 severity 5 Capacity & remaining life

Challenges for Engineers/Researchers

- Enormous amount of data from monitoring
- Completely in-balanced data few or none data from damaged cases

Challenges for Engineers/Researchers

- Damage detection is **NOT deterministic inverse problem**
- Operational and Environmental Variability (an example from Farrar, Los Alamos National Laboratory, USA)

Technological advancement

- Different perspectives on "Solutions" toward SHM problems
 - Researchers: define generic problem (often matched with methodology) to show it works
 - Engineers: define specific real problem and develop a solution for it

SHM dilemma

- Assets owner will not invest SHM technology until it works in real-world applications.
- Researchers do not get opportunities to develop and demonstrate SHM technology.
- Solution?

Challenges for Engineers/Researchers

- SHM Chain
- Does SHM has Rol?
- Role of Data analytics and Machine Learning

• Solution?

Bridge HealthCare framework

Bridge Healthcare Demo at UTS TechLab

- Integrated research into current practice

- Healthcare Design
- Healthcare procedure
 - <u>Benchmarking</u> with instrumented truck
 - <u>Monitoring</u> with crowdsource data
 - Diagnosis & Prognosis with instrumented truck and various tools + structural engineering knowledge/experience
 - <u>Risk & reliability</u>
 <u>assessments</u>
 - Repair and rehabilitation

Examples of Bridge HealthCare research at UTS

- 1. Utilisation Vehicle-bridge interaction for structural damage detection -Saeid Talaei, PhD research project
- 2. Impact force localization and reconstruction Bing Zhang, PhD research project
- 3. Structural damage detection for the semirigid joint spatial bridge with wireless measurements Jiajia Hao, PhD research project
- 4. Implementing Transfer Learning for Damage Detection
 - Xutong Zhang, PhD research project
- 5. Advanced signal processing technique for extracting the time-varying feature of the VBI system Mingzhe Gao, PhD research project
- 6. Development and Application of Self-sensing Concrete for Structure Health Monitoring - Dr Wengui LI, ARC future fellow
- 7. Bridge UAV crack detection with deep learning Dr Yancheng LI, Senior Lecture
- 8. Intelligent Robotics for steel bridges and structures Dist./Prof Dikai Liu, Robotics Institute, UTS

Utilisation Vehicle-bridge interaction for structural damage detection - Saeid Talaei, PhD research project

Vehicle-bridge interaction based structural damage detection

- Excitation force is close to the bridge operational condition
- Gives much more information compared to impact force
- Moving vehicle \rightarrow less sensors
- More sensitive to local damage
- Time varying damage sensitive features

Fine-tuning AlexNet Pretrained Network for Damage Detection

Time-Frequency domain representation of the acceleration data corresponding to different damage scenarios are used to fine-tune the pretrained AlexNet model for damage localization

Contusion matrix of classification results

Impact force localization and reconstruction

- Bing Zhang, PhD research project

Moving force identification via equivalent nodal force based on group weighted regularization

Moving force identification via equivalent nodal force based on group weighted regularization

Numerical validation

The effect of the number of sensors

Identified equivalent loads

Structural damage detection for the semirigid joint spatial bridge with wireless measurements

- Jiajia Hao, PhD research project

semi rigid joint model of nonuniform cross section element is developed considering both element and joint stiffness.

Implementing Transfer Learning for Damage Detection

- Xutong Zhang, PhD research project

Case study: Lumped mass model, single damage case study: sample numbers in each damage scenario for each domain.

	Training			Testing				
	Source	Undamage	Single	Target	Undamage	Single		
	domain	d	damage	domain	d	damage		
Source	Numerical	D0 243	D1 243	Experimen	D0 108	10D2 108		
domain 1			D2 243	tal		20D2 108		
	(CNN)		D3 243					
Target	Experimen	D0 108	10D2 108	Experimen	D0 54	10D2 54		
domain 1	tal		20D2 108	tal		20D2 54		
	(FT)							
Note: D0 is the intact structure; D1 is the 0-30% damage on the first floor; D2 is the 0-								

30% damage on the second floor; D3 is the 0-30% damage on the third floor; 10D2 is 10% on the second floor; 20D2 is 20% damage on the second floor.

Results

High accuracy of the overall performance for predicting the damage severity across different domains.

15 20 Frequency(Hz) Model2 2nd sensor response

25

Advanced signal processing technique for extracting the time-varying feature of the VBI system

- Mingzhe Gao, PhD research project

The proposal of this project is to develop a novel machine learning and signal processing based algorithm for bridge condition assessment. The detail objectives are as follows

- Vehicle-bridge model Use matlab to make finite element modal to construct model shown as Figure 1
- Synchroextracting Transform (SET): As the same as SST then calculate the estimation IF The final step is energy extraction :

 $Te(t,\omega) = G_e(t,\omega) \cdot \delta(\omega - \omega_0(t,\omega)) \qquad \qquad \delta(\omega - \omega_0(t,\omega)) = \begin{cases} 1, \omega = \omega_0 \\ 0, \omega \neq \omega_0 \end{cases}$

• *Two stream CNN* : 2D-CNN takes **SET time-frequency map as input**, and 1D-CNN takes **FFT spectral signal as input**, and performs convolution layer and pooling respectively

Development and Application of Self-sensing Concrete for Structure Health Monitoring - Dr Wengui LI, ARC future fellow

Development and Application of Self-sensing Concrete for Structure Health Monitoring - Dr Wengui LI, ARC future fellow

(b) Compression machine and multimeter for resistance

Bridge UAV crack detection with deep learning

- Dr Yancheng LI, Senior Lecture
- An integrated system to scan through bridge, to instantly identify cracks and to display identified crack in a portable user interface;
- Key features:
 - □ Automated crack detection system;
 - Wireless data transmission;
 - □ Hardware & software interface;
 - Possible crack evaluation and prediction?
- Challenges:
 - Light DL crack detection algorithm with high efficiency and accuracy;
 - □ Autonomous crack quantification process;
 - □ Image enhancement, image chopping, and data fusion;
 - Video-based crack detection;

A framework for bridge UAV crack detection

Bridge UAV crack detection with deep learning

- Dr Yancheng LI, Senior Lecture

Algorithm architecture: ResNet 101 as backbone with two attention mechanisms

Vertical and horizontal compression attention module

Models	PA	MPA	MIoU	FWIoU
U-Net	98.28	83.28	77.82	96.82
Dilated FCN	98.16	80.24	75.05	96.69
DeepLabv3+	98.52	83.61	77.94	97.29
PAN	98.38	81.08	75.8	96.69
AFFNet	98.73	90.78	82.28	97.78

FCN: fully convolutional network; AFFNet: attention-based feature fusion network; PA: pixel accuracy; MPA: mean pixel accuracy; MIoU: mean intersection over union; FWIoU: frequency weighted intersection over union.

In press with Structural Health Monitoring

Work in progress

• Topic 1: CrackSegFormer- An Efficient vision transformer-based segmentation network for concrete crack detection (submitted)

Algorithm level: improve the performance of segmentation based vision transformer

• Topic 2: A framework for light DL crack segmentation network

Towards hardware development: executable in cost-effective hardware implementation

• Topic 3: Automated crack quantification process

Practical based: built on CNN, to identify crack length/width, evaluate crack severity and possible prediction...

• Topic 4: Hardware & software interface development

Towards implementation: wireless data transmission, hardware selection, code transplantation (FPGA or MCU), user-friendly interface....

Interest to collaborate? Email: yancheng.li@uts.edu.au;

Intelligent Robotics for steel bridges and structures

- Dist./Prof Dikai Liu, Robotics Institute, UTS

Autonomous robots for steel bridge maintenance (Industry Partners: RTA of NSW, SABRE Autonomous Solutions)

Intelligent Robotics for steel bridges and structures

- Dist./Prof Dikai Liu, Robotics Institute, UTS

Bio-inspired autonomous climbing robots for inspection of the Sydney Harbour Bridge (Industry Partners: RMS of NSW)

Biologically Inspired Climbing Robot For Infrastructure Inspection and Condition Assessment

Climbing robots for inspection, cleaning, and painting in confined space (Industry partner: TfNSW)

Intelligent Robotics for steel bridges and structures

- Dist./Prof Dikai Liu, Robotics Institute, UTS

Underwater robot for bridge/wharf pile cleaning and inspection (Industry Partner: RMS of NSW)

Robots for truss structure inspection, cleaning and painting (Industry Partner: TEPCO, Japan)

Summary and Conclusions

The End of the presentation

Thank you for your attention!