14th Annual Workshop of the Australian Network of Structural Health Monitoring

THE BENEFITS OF DIGITAL ENGINEERING AND PREFAB IN CONSTRUCTION

David Haller National Operations Manager, Masterplanned Communities, Mirvac

mirvac

.

MIRVAC'S PREFAB Journey

YEARS OF PREFAB PROJECTS AND LEARNINGS

2013

ELIZABETH HILLS – NSW	BRIGHTON LAKES - NSW	DONCASTER - VIC	WAVERLY PARK - VIC	WOODLEA - VIC
 2 Home Trial Walls and floors 10 weeks program saving (42%) 	110 homesWalls and floorsAvg 27% reduced program	 36 Homes Walls, Floors & Lift Shafts 20-25% reduced program 	 11 Homes Walls & Floors 23% time saving in build duration 	 26 homes First 52 bathroom pods used in Mirvac Homes 88% Reduction in On-Site labour hours for bathroom work

COMPLETED HOMES USING PREFAB

COMPLETED HOMES USING PREFAB

Summary of benefits using 'prefab'

BENEFITS FOR THE BUILDER

		1
Construction Program	REDUCED BY 20-40%	
Site Prelims costs	REDUCED BY 20-40%	
Construction waste removal	REDUCED BY 40-50%	
Scaffolding hire period	REDUCED BY 30-50%	
On-site labour requirements	REDUCED	
Construction administration tasks	REDUCED	
Site safety administration tasks	REDUCED	
Manual Handling requirements	REDUCED	
Incidents and Injuries	REDUCED	
Work related stress and fatigue	REDUCED	
Inconsistent Quality	REDUCED 🕑	

BENEFITS FOR THE CUSTOMER

- Certainty of Delivery
- Improved Performance
- Improved Durability
- Market leading product
- · Improves consistency of quality and finish
- Reduce post completion issues

BENEFITS FOR THE ARCHITECT

- Improves Design Efficiency
- Reduced documentation detailing
- Ability to develop a product catalogue
- Documentation Consistency
- Improve consistent workmanship outcomes

BENEFITS FOR THE COMMUNITY

- Reduced waste generated on site
- Reduced carbon footprint of construction
- Higher Performing and energy efficient homes
- Reduce construction impact on community
- Reduced construction traffic

BENEFITS FOR THE DEVELOPER

- · Project metrics: Less time improves IRR and ROIC
- Responsible Developer Reputation
- Forward Thinking, Industry Leading
- Reduce Impact on existing development customers
- Reduces Project Delivery Risk

The real challenges of prefab in residential construction

CHALLENGES WITH PREFAB IN AUSTRALIA

CHALLENGES	SOLUTIONS	
PREFAB COSTS MORE	 Adopt DfMLA principles Demonstrate total project savings upfront Unlock economies of scale Utilise technology to reduce costs 	
CUSTOMER EXPECTATIONS (PERSONALISED DESIGNS)	 Educate the customer on how to balance design excellence and DfMLA Provide evidence on increased performance through prefab Demonstrate the value of a better balance between aesthetics and performance 	
CHANGE MANAGEMENT	 Educate all stakeholders on change management principles and techniques Implement governance to assist in change management support Demonstrate value and benefit to the various stakeholders 	

CHALLENGES WITH PREFAB IN AUSTRALIA

CHALLENGES	SOLUTIONS
MANUFACTURING SUPPLY CHAIN	 Increased adoption of prefab will increase manufacturing supply chain Early Engagement and Builder/Manufacturer risk sharing balance Developing industry partnerships
INTENSE PLANNING REQUIREMENTS	 Implement structured governance to assist in planning requirements Utilise Technology (BIM and DE) Establish appreciation for the benefits of better planning
ADOPTING DIGITAL ENGINEERING	 Invest in Software to unlock efficiency Education and Training on 3D, 4D and 5D benefits Understand the value of model sharing between builder/designer/manufacturer

Mirvac case studies

CAPTURING DATA TO PROVE THE BENEFITS AND OFFSET CHALLENGES

Case Study #1 WOODLEA, VIC, 2021 BATHROOM PODS

COLLECTING BENCHMARK DATA FOR COMPARISON

OUR PEOPLE – TRADITIONAL APPROACH

OUR PEOPLE – PREFAB APPROACH

SUMMARY

15+

SENT

130 +HOURS

IN MEETINGS

Inspections

360+ HOURS

71% REDUCTION

IN INSPECTIONS

104+

OUR PROJECT Traditional Prefab Pod 2,964 HRS 114 HRS **37** HRS 1.5 HRS 26) 88% REDUCTION IN <u>í 1</u>) MAN HOURS MAN HOURS **94**% 🙆 109 days M CONSTRUCT DANS 26 7 DAYS FOR BATHROOMS 26 HOME ONE HOME

Case Study #2 GEORGES COVE, MOOREBANK, SYDNEY

COLLECTING BENCHMARK DATA FOR COMPARISON

THE BENEFITS KEEP GETTING BETTER...

PROGRAM BENEFITS

SUPERSTRUCTURE

Reduction

EXTERNAL CLADDING FLOORING

OVERALL DURATION

OTHER BENEFITS

WASTE REDUCTION

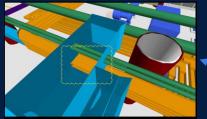
60%

Reduction

SCAFFOLD HIRE

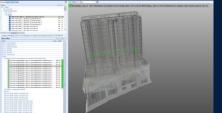
53% Reduction MANUAL HANDLING

SAFETY RISKS Material Cutting Falling Objects Falls from Height



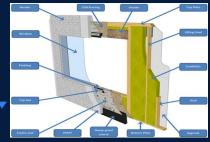
What's next?

DIGITAL ENGINEERING IN CONSTRUCTION


3D DESIGN COORDINATION

4D PLANNING

5D QUANTIFICATION & COSTING



BUILDING INFORMATION MODELLING (BIM)

OFF SITE MANUFACTURE

CAPTURING AND LEARNING FROM DATA

VISUALISATION AR/VR

ALTONA NORTH – VIC

130 APARTMENTS - PREFAB WALLS, FLOORS AND BATHROOM PODS

DFMLA PRINCIPLES ADOPTED AT CONCEPT DESIGN

USE OF TECHNOLOGY (BIM)

- 3D Modelling
- Transfer of Loads
- 6 Bathroom Types
- Floor plate Efficiency
- Lightweight Timber Structure

EARLY CONTRACTOR ENGAGEMENT

- Compliance Consultant
- Structural Engineering
- Services
- Structure

PREFAB ELEMENTS UNLOCKED

• External Walls

• 4D Planning

5D Estimating

- Internal Walls and Parti Walls
- Structural Flooring
- Bathroom Pods

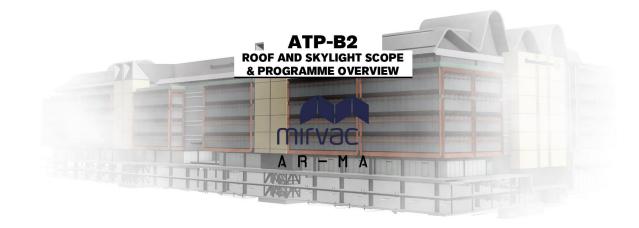
CASE STUDY

DIGITAL ENGINEERING & DFMA IN PRACTICE

AUSTRALIAN TECHNOLOGY PARK (ATP) - SOUTH EVELEIGH

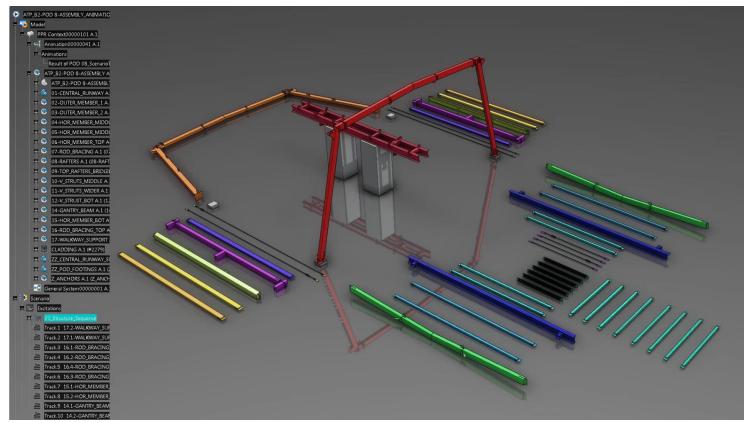
Project Information

- » 125,000m2 NLA
- » \$925 million Construction Costs



STAGE 1 – CREATING THE DIGITAL MODEL

STAGE 2 – **IDENTIFYING COMPLEX ELEMENTS & DFMA PRINCIPLES**



Identification of key DFMA opportunities in early planning phase of the project. These included:

- » Roof modules
- » Skylight / POD modules

STAGE 3 – MODELLING COMPONENTS

STAGE 4 – MODELLING ASSEMBLY OF COMPONENTS

STAGE 5 – MODELLING SITE LOGISTICS

STAGE 6 – CONSTRUCTION SEQUENCING (4D)

ATP-B2 ROOF AND SKYLIGHT SCOPE 4D CONSTRUCTION SEQUENCE

STAGE 7 – ON SITE DELIVERY

PHASE 6 – ROOF INSTALLATION PROGRESS PHOTOS

Thank you