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President’s Message 

  

Tommy Chan 

Professor in Civil Engineering, Queensland University of Technology 

 

Dear All, 

 

First of all, let us join together to congratulate Prof Mark Stewart of UTS, one of our ANSHM 

Advisory Board members together with Prof Chun-Qing Li of RMIT as the first CI, and other 

researchers, has been awarded an amount of $5m to establish the ARC Training Centre for Whole Life 

Design of Carbon Neutral Infrastructure, with Mark as the 2nd CI of this ARC ITTC.  

 

For the month of August, I think one of the hot topics in the news and social media is about FIFA 

Women’s World Cup 2023. Our hearts melted when the Matildas was defeated by the European 

champion, England, in the semi-final. In the match defeating France on 12th August 2023, the 

attendance at the Suncorp Stadium, Queensland was 49,461, reaching almost 95% of its full capacity 
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(52,500). This leads to the discussion about the existing facilities for the Olympics. Actually, 

regarding the preparation for the Olympic Games in 2032, there are different voices about how we 

plan for the facilities, to upgrade or build new ones for this world event, especially when Victoria in 

July pulled out of hosting the Commonwealth Games 2026. All these are not related to something 

that I am familiar with, so I intend not to make any comments. However, one thing we could consider 

is how SHM could help us prepare for the Olympic Games 2032 in Queensland. We have more than 

eight years to prepare for this world event. How could current SHM technologies help the design, 

construction, and maintenance of all these to be upgraded or built facilities and the associated 

infrastructure? How are the research and development we should focus on so that the findings can be 

timely achieved for implementation at the facilities and the associated infrastructure to deliver the 

best benefits? As an example, let us see an interesting “quake” caused by a recent stadium event at 

Lumen Field, a multi-purpose stadium in Seattle, Washington, USA.  

 

In mid-August, Pacific Northwest Seismic Networks (PNSN) reported an exciting “seismic” event 

which was triggered, not by a fault, but by a concert at Lumen Field, during the performance of a pop 

megastar, Taylor Swift1. The quake now known as “Swift Quake” was registered on a nearby PNSN 

strong-motion station KDK, located just outside Lumen Field. The signals recorded by a PNSN 

station, known as KDK station, were roughly equivalent to a magnitude 2.3 earthquake. It broke the 

record of “Beast Quake” of 2011, during an athletic event and the activity at the time was close to a 

magnitude 2.0 earthquake, recorded by the same seismic station, KDK. Below shows a comparison of 

the ground vibration of the two quakes. 

 

 
1 Marczewski, K. (2023), “Beast Quake (Taylor's Version) (From The Vault)”, PNSN,  

https://pnsn.org/blog/2023/08/15/beast-quake-taylor-s-version-from-the-vault  

https://pnsn.org/blog/2023/08/15/beast-quake-taylor-s-version-from-the-vault
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Figure 1:  A comparison of the two quakes at a stadium: Top - Beast Quake (2011); and Bottom - Swift Quake 

(2023) PNSN1 

 

It can be seen that the magnitude and duration of the Beast Quake are much smaller and shorter than 

those of the Swift Quake, but the Beast Quake was only 0.3 magnitude smaller than the Swift Quake, 

as the Richter scale is logarithmic. Although the two events both happened in the same stadium and 

were packed full of 70,000 plus people, Prof Jackie Caplan-Auerbach of Western Washington 

University stated in the report that the comparison may not be fair. She considered “Taylor’s concert 

had the additional help of extremely loud music, which could have given the concert attendees an 

advantage of coordinating the random jumping and dancing into a more synchronous reaction.”  

This report could give us some insight into our preparation for the Olympic Games 2032. It can be 

seen that quakes could be caused by activities in a stadium when fans are chanting, jumping, swaying, 

and cheering, as seen in the game in 2011 and the concert in 2023 at Lumen Field, respectively. Prof 

Jackie called these quakes Fan Quakes. The same two questions that we, as those working in the field 

of SHM, should really consider: 

1. How current SHM technologies could help the design, construction, and maintenance of all 

these to-be-upgraded or newly-built facilities and the associated infrastructures?  
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2. How are the research and development we should focus on so that the findings can be timely 

achieved for implementation at the facilities and the associated infrastructure to deliver the 

best benefits? 

 

I addressed those two questions mentioned-above in a special lecture given in a Summer School, 

entitled “Intelligent Construction” for all graduated students in Jiangsu Province, PRC, organised by 

Nantong University (NTU). One of my former PhD students, joined NTU after he completed his PhD, 

is now an Associate Professor in this University. He invited me to give a special lecture about the 

SHM development in Australia in the Summer School. After Covid 19, we opened a new opportunity 

and now we do not have to travel overseas and could give a lecture online virtually using a remote 

meeting platform. On 17th August 2023, I gave a 90-minute lecture to the students and the talk was 

well received. 

 

 

Figure 2 Opening Ceremony of the Summer School 
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In the lecture, besides publicising our book celebrating ANSHM 10th Anniversary (Figure 3), I also 

stated one of the directions of SHM to address those two questions mentioned-above is to deliver real 

digital twins for the facilities (upgraded or newly built) and the associated infrastructures. 

  

 
Figure 3 - Prof Tommy Chan delivering the Special Lecture introducing ANSHM 2nd Monograph, "SHM 

Research in Australia" 

 

Most often, we can see that many so-called digital twins are only reflecting the spatial properties of a 

physical entity but could not truly capture its structural behaviours. SHM could help to develop a real 

digital twin of a structure. With the use of advanced modelling techniques like concurrent multi-scale 

modelling2, and substructural modelling3, we are able to install a smaller number of sensors for 

digital twinning using SHM techniques. Besides, the use of machine-learning based and/or 

 
2 Chan, T.H.T., Li, Z.X., Yu, Y. and Sun, Z.H. (2009) “Concurrent Multi-scale Modeling of Civil Infrastructures for Analyses on 

Structural Deteriorating – Part II: Model Updating and Verification”Finite Elements in Analysis and Design Vol. 45, pp. 795-805. 
3 Jamali, S., Chan, T.H.T., Koo, K.Y., Nguyen, A., and Thambiratnam, D.P. (2018), “Capacity estimation of beam-like structures using 

substructural method”, International Journal of Structural Stability and Dynamics, Vol. 18, No. 12, 

https://doi.org/10.1142/S0219455418501626. 
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optimisation-based model updating and damage/deterioration detection techniques44, we are able to 

use the digital twins developed to achieve true performance monitoring and health status evaluation 

for SHM. In the keynote lecture that I am going to present in the forthcoming SHMII-12 in October in 

Hangzhou, PRC, I will give further discussion on this. 

 

In the last monthly updates, when I mentioned the ANSHM special issues in Structural Health 

Monitoring, an International Journal (SHMIJ) and the Journal of Civil Structural Health Monitoring 

(CSHM), I missed one special issue in SHMIJ. To be correct, in the past, we published 3 special issues 

in CSHM: Vol. 8, No. 5 (2018), Vol. 6, No. 3 (2016), Vol. 3, No. 2 (2013) and 2 special issues in 

SHMIJ: Vol. 13, No. 4 (2014), Vol. 18, No. 1 (2019). The ANSHM website has also been updated to 

include the missing SHM special issue. I am really sorry for the confusion which might be generated 

by this.  

 

Below are the updates for the month. 

 

ANSHM 15th Workshop 

Please note the following details for the forthcoming ANSHM 15th Workshop, our annual important 

event. 

 

Title:  The 15th Australian Network of Structural Health Monitoring Workshop &  

The Smart Infrastructure Summit 2023 

Theme:  Infrastructure Digitisation for Net Zero Transition 

Hosts:  Rockfield Technologies Australia Pty Ltd and James Cook University 

Organisers:  Dr Govinda Pandey, the CEO of Rockfield, and  

A/Prof Ragbin Tuladhar, Head of Engineering,  

College of Science and Engineering, JCU 

Dates:  23rd - 24th November 2023  

with the 25th (Saturday) as an optional day trip to Magnetic Island 

(Please mark the dates on your calendar) 

Venue:  Townsville (exact location to be advised soon) 

 

 
4 Nguyen, A., Kodikara, K.A.T.L, Chan, T.H.T., and Thambiratnam, D.P. (2018), “Deterioration assessment of buildings using an 

improved hybrid model updating approach and long-term health monitoring data”, Structural Health Monitoring, 18 (1), pp. 5-19. 
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Dr Ulrike Dackermann, ANSHM Workshop Coordinator and I had a meeting with the two organisers 

of the Workshop, Dr Govinda Pandey and A/Prof Rabin Tuladhar. I am pleased to let you know that 

the preparation for the Workshop has been progressing very well and the organisers have progress 

meetings weekly. Day 1 is called the Smart Infrastructure Summit 2023 and the presentations will be 

by invitation only. Day 2 will follow the ANSHM’s traditional Workshop style and the flyer for the call 

for abstracts of presentations will be distributed soon.  

 

As in previous ANSHM Workshops, ANSHM Advisory Board Meeting (ABM) will be held on the 1st 

day of the Workshop and the ANSHM Annual General Meeting (AGM) on the 2nd Day. ANSHM Rule 

6.5 states that the quorum for the AGM meetings shall be one half of the number of Core Members 

plus one. In order to ensure the quorum requirement could be satisfied, Ulrike conducted a survey to 

ask the EC/AM members of ANSHM to indicate whether they will attend the forthcoming 15th 

ANSHM Workshop. I am pleased to let you know that according to the survey, 72% of the Core 

Members will attend the Workshop. 

 

SHMII-12 

I am pleased to let you know that so far we have eight papers/extended abstracts accepted to be 

presented at the ANSHM Special Session, entitled “Towards Sustainable and Resilient Infrastructure” 

(SS121) in the 12th International Conference on Structural Health Monitoring of Intelligent 

Infrastructure (SHMII-12), which will be held on 19th - 22nd October 2023, in Hangzhou, Zhejiang, 

China. If you still like to join this special session, when submitting papers/extended abstracts using 

the Conference's official link, https://www.shmii-12.com/, please choose the special session under 

Australian Network of Structural Health Monitoring (ANSHM): Towards Sustainable and Resilient 

Infrastructure. However, make sure you will submit it on 31st August 2023, the Final 

Papers/Extended Abstracts’ Submission Deadline. 

 

Please note that the conference registration and hotel reservation portals are now open. SHMII-12 

Secretariat encourages those who would like to attend the conference to take advantage of the early 

bird discount (before September 1, 2023) and greatly reduced conference room rate. For more 

information concerning the program of the conference, please see the conference website 

(https://www.shmii-12.com). The website also provides other details, such as information about the 

Keynote Speakers apart from myself. For any queries, please contact the conference organiser at 

shmii-12@zju.edu.cn. 

 

https://www.shmii-12.com/
https://www.shmii-12.com/
mailto:shmii-12@zju.edu.cn
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ANSHM WebForum 

We had our 1st ANSHM Webinar held on 24th August 2023. Many thanks to Brad Dalton, Structural 

Health Consultant of Furgo presenting Digicampus Computer Vision techniques developed by Fugro, 

which could be used for Remote Surveying, Thermal Imaging and Visual Vibrometry. There were 

around 30 ANSHM members from the industry, road authorities, and universities attending the 

Webinar. We also had a very good discussion after the presentation. 

 

 

Figure 4 – Brad Dalton presenting how the Imetrum System used to measure a rail bridge 

 

It is interesting to find that after the Webinar, there were many trying to log in to the corresponding 

Zoom meeting. The recording of Brad’s Presentation and the subsequent discussion have been 

uploaded to ANSHM Youtube Channel. For those who have missed the Webinar or would like to 

watch it again, the Youtube link is provided below:  

https://www.youtube.com/watch?v=moZBl5WW7oI.  

 

ANSHM will keep organising this kind of Webforum for SHM Sensor/Service providers to introduce 

their sensors/services for practical implementation and research collaboration. We will also organise 

some other forums to discuss SHM-related topics.  

 

https://www.youtube.com/watch?v=moZBl5WW7oI
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ANSHM Executive Committee Meeting 

At the time (31st August 2023), I am preparing this President Message, we are going to have our 

Executive Committee Meeting in the afternoon. Hence, I could only provide outcomes of the meeting 

as updates of ANSHM in the next monthly updates. 

 

In the next sections, we will have two articles from our members. The first article is titled as A linear 

universal filter for input and state estimation of structural systems co-authored by Zihao Liu,  

Mohsen Ebrahimzadeh Hassanabadi and Daniel Dias-da-Costa from School of Civil Engineering, The 

University of Sydney, Sydney and the second one is a short technical note co-authored internationally 

by Vahid Reza Gharehbaghi, School of Civil Engineering, University of Kansas, USA and Ehsan 

Noroozinejad Farsangi, Urban Transformations Research Centre, Western Sydney University with a 

title of A Breakthrough in Deterioration and Damage Detection for Building Structures. 

 

 

With kind regards, 

Tommy Chan 

President, ANSHM 

www.ANSHM.org.au 

 

Professor Tommy H.T. Chan PhD, ThM, MDiv, BE (Hons I), FHKIE, MIE Aust, CP Eng, NPER, 

MICE, C Eng, RPE, MCSCE  

President ANSHM (www.ANSHM.org.au) 

School of Civil & Environmental Engineering, Queensland University of Technology (QUT) 

GPO Box 2434, Brisbane, QLD 4001, AUSTRALIA.  

Ph. +61 7 3138 6732; Fax. +61 7 3138 1170; email: tommy.chan@qut.edu.au;   

Research profile | Research publications | Google Scholar citations

https://urldefense.com/v3/__http:/www.ANSHM.org.au__;!!NVzLfOphnbDXSw!QuH1nFTuKETf04JfWGtWMz-i17Gj0JA39oROv49PI8Z2_R5bZggOPAoHPqQdrDQKKRlL$
mailto:tommy.chan@qut.edu.au
http://staff.qut.edu.au/staff/chanth/
http://eprints.qut.edu.au/view/person/Chan,_Tommy.html
https://urldefense.com/v3/__http:/scholar.google.com.au/citations?user=uuN_fS8AAAAJ__;!!NVzLfOphnbDXSw!QuH1nFTuKETf04JfWGtWMz-i17Gj0JA39oROv49PI8Z2_R5bZggOPAoHPqQdrN9IKkTl$
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A linear universal filter for input and state estimation of structural systems 

Zihao Liu, Mohsen Ebrahimzadeh Hassanabadi and Daniel Dias-da-Costa* 

School of Civil Engineering, The University of Sydney, Sydney, NSW 2006, Australia 

*Email: daniel.diasdacosta@sydney.edu.au  

 

ABSTRACT 

This paper presents a recursive filtering method for simultaneous input and state estimation of linear 

structural systems. The proposed method falls within the category of Minimum-Variance Unbiased 

(MVU) estimators. In contrast to the Augmented Kalman Filter (AKF), the proposed method does not 

require any assumptions or statistics for estimating unknown input, resulting in a low-cost 

hyperparameter tuning process. Furthermore, the existing MVU filters, such as Gillijns and De Moor 

Filters (GDFs), can only be used in either systems without acceleration measurement or systems 

where the number of accelerations is greater than the number of unknown inputs. On the contrary, the 

proposed method is universally applicable to any sensor network as long as the number of 

measurements (of any type) is no less than the number of unknown inputs. Because of this unique 

characteristic, the proposed method is designated Universal Filter (UF). Numerical tests not only 

reveal that the UF outperforms the AKF and the GDFs in well-conditioned problems but also 

demonstrate the ability of the UF to handle ill-conditioned systems where these systems cannot be 

covered by GDFs. 

 

INTRODUCTION 

Recursive filtering methods are widely utilised signal processing techniques that offer real-time 

frameworks for approximating target quantities in mechanical and infrastructural systems. The 

approximations are achieved by integrating data from infrequent measurements with a physical 

model. Applications of filtering estimation methods span structural health monitoring, structural 

system identification, model updating, and vibration control. Kalman Filter (KF) (Kalman, 1960) is 

the most frequently employed for structural system identification and monitoring. It had various 

applications, including predicting fatigue in metal structures (Papadimitriou et al., 2011) and offshore 

wind turbines (Maes et al., 2016), monitoring structural displacement (Ma et al., 2023), and 

decoupling physical changes caused by structural damage and varying environmental conditions 

(Erazo et al., 2019). However, structural system identification presents challenges due to operational 

mailto:daniel.diasdacosta@sydney.edu.au
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dynamic input loads, such as seismic activity, blast loads, vehicular traffic, and wind, as directly 

measuring these inputs is either costly or unfeasible. In this context, output-only recursive filtering 

methods offer potential advantages (Lourens & Fallais, 2019). One outstanding output-only input and 

state estimation technique is the Augmented KF (AKF) (Lourens, Reynders, et al., 2012), which 

regularises the input estimation problem. The AKF involves augmenting the state vector with 

unknown inputs and integrating a supplementary fictitious random walk into the process equation 

with an attributed virtual process noise. This allows the AKF to estimate both the inputs and the state 

of the system via the routine prediction and update processes of the KF.  

The requirement of modelling input evolution (e.g., a random walk) or assigning statistical properties 

like covariances to inputs may not always be feasible, as such details about inputs are typically 

unknown. This limitation can be solved by another category of filtering methods that do not rely on 

input assumptions. Within this group, a pioneering linear Minimum Variance Unbiased (MVU) filter 

was proposed by Kitanidis (1987). In contrast to the AKF, the input evolution is not involved in the 

estimation process such that Kitanidis' filter avoids complex hyperparameters tuning related to inputs. 

However, this filter can only estimate the state and is constrained to system observations without 

direct transmission. Gillijns and De Moor (2007a) proposed an MVU filter for simultaneous 

estimation of inputs and states in linear systems, which is only applicable to systems without direct 

feedthrough – in the context of structural dynamics, this refers to systems without acceleration 

measurements. This filter is referred to as GDF-WNDF in this paper. To accommodate systems with 

direct feedthrough, another algorithm was proposed by Gillijns and De Moor (2007b) for joint input 

and state estimation, referred to as GDF-WDF; this filter requires a full-rank feedforward matrix, 

implying that the minimum quantity of acceleration measurements must be equal to or more than the 

number of unknown inputs. A significant limitation of these filters is the rank condition of the 

feedforward matrix. Therefore, the aforementioned algorithms can only be applied to systems with no 

direct feedthrough or with a full-rank feedforward matrix.  

This paper presents a novel four-step MVU filter for the simultaneous estimation of inputs and states 

within the field of structural dynamics. The proposed MVU filter eases the requirement of a full-rank 

feedforward matrix or the absence of a feedforward matrix; in other words, the algorithm is applicable 

universally, regardless of the rank condition of the feedforward matrix. Based on this feature, the 

proposed filter will be hereafter referred to as Universal Filter (UF). It should be mentioned that no 

assumption is made on the input model or statistics, and the input regularisation is not needed within 

the inverse analysis. Solutions to the estimation errors and the error propagation are derived in their 

closed form without any simplifications. The optimal input gain is derived from weighted least squares, 

and the optimal state gain is computed by minimising the trace of the state estimation error 
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covariance. To illustrate the estimation quality of the UF for different inputs and sensor networks, two 

numerical case studies are presented, and the performance of the UF is compared with AKF and 

GDFs. 

 

FILTER FORMULATION 

System equations 

The discrete-time recursive process equation of a linear structural system can be defined by: 

.  
(1) 

In the above equation,  is the state vector,  is the input vector, and the zero-mean 

white noise vector  represents the modelling error. Matrices  and  stand 

for the system matrix and input matrix. Note that the Zero-Order-Hold assumption in Eq. (1) is 

different from the existing MVU filters where the input vector is evaluated at timestep , which 

creates one timestep lag between the state and the input. 

The observation equation can be written as: 

,  
(2) 

where  is the output vector containing the sensory measurements; the output matrix 

 and the feedforward matrix  relates the state and unknown input to the 

measured quantities . The zero-mean white noise  stands for the measurement noise. Note 

that in the absence of acceleration measurement, , leading to a system without direct 

feedthrough, whereas acceleration measurements imply a system with direct feedthrough in which 

. 
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Filtering steps 

A four-step filtering framework is developed for the system defined by Eqs. (1) and (2). First, a biased 

state estimate  of the true state  is obtained based on the information from the previous 

timestep: 

.  
(3) 

By fusing the biased state estimate  and the observation , a minimum-variance unbiased 

estimate  of the true input  can be obtained as: 

,  
(4) 

where  is the input gain obtained by using weighted least squares. The biased state estimate  

and the estimate of the input  are used to obtain an unbiased a-priori state estimate : 

.  
(5) 

The a-posteriori state estimate  is calculated by incorporating , the optimal state gain 

 and the innovation  by using: 

.  
(6) 

Summary of the filter 

The filtering steps and relevant error covariances are presented in Table 1. For detailed 

derivations of the proposed filter, readers can refer to the work by Ebrahimzadeh Hassanabadi et 

al. (2023). 
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Table 1 Summary of the filtering scheme 

A. Initialise at  

• Assign  

• Assign  

 

B. For ,  

➢ Input estimation  

•  

•  

•  

•  

•  

➢ State estimation  

•  

•  

•  

•  
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•  

•  

•  

•  

•  

•  

•  

•  

•  

 

NUMERICAL VALIDATIONS 

Two case studies are selected to illustrate the proposed filter. First, a numerical model of an 

eight-storey shear frame is used to compare the performance of the UF and AKF. Next, the 

39-storey Pirelli tower is used to compare the UF with GDFs. Finally, a rank-deficient 

feedthrough scenario is also presented. Rayleigh damping is assumed with Rayleigh factors 

 for the following numerical examples, and filters are optimised using a grid search 

method. 

Eight-storey shear building  

The purpose of the first numerical model consisting of an eight-storey shear building is used to 

highlight a known limitation of the AKF (Lourens, Papadimitriou, et al., 2012) stemming from its 

input regularisation, whereas the UF is an input regularisation-free framework. The parameters of the 
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shear building frame model are taken from De Callafon et al. (2008). The building has eight levels 

with an inter-storey stiffness of  N/m and a lumped mass of 625 tonnes at each level. A sinusoidal 

load defined by  N is applied on the top level for an analysis time duration of  s. 

The natural frequencies of the structure range from  to  rad/s. Only the first two vibrational 

modes are considered in the process equation of both AKF and UF to create the modelling error. The 

sensor network includes a displacement measurement at the 4th level, a velocity measurement at the 

top level, and an acceleration measurement at the first level.  

To evaluate the estimation quality, the estimated inputs by the AKF and UF are illustrated in Figure 

1(a). While the AKF provides a relatively smooth input estimation compared to the UF, it has delay 

and underestimation, an issue not found with the UF. Figure 1(b) and (c) present the estimated 

velocity and displacement, respectively. The displacement estimated by the UF matches the exact 

values in contrast with the AKF estimation, which is biased and underestimates the displacement. The 

underestimation is significant in the AKF velocity estimation, whereas the quality of UF estimation 

should be highlighted is substantially superior.  

 

  
(a) 
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(b) 

 

(c) 

Figure 1 Estimation results by UF and AKF: (a) input, (b) velocity and (c) displacement. 

 

Pirelli tower  

The second numerical example presents the joint input-state estimation using a finite element model 

of the 39-storey Pirelli tower shown in Figure 2, which was previously studied by Barbella et al. (2011). 

All nodes in the 3-D model are restrained in the vertical direction, and the study focuses on the lateral 

vibration of the tower along its longer dimension of the floor plan. The first eight natural modes are 



 
 

 

 

 

  18 

 

 

 

 

 

used in the process equation of the filter with the natural frequencies ranging from  to  

rad/s.  

 

Figure 2 Pirelli tower in Milan, Italy 

To compare the UF with GDF-WDF, a swept sine load defined by  N is applied 

on the 10th level, in which . The observation includes displacement measurements 

at the 1st, 6th, 22nd, and the 34th levels; and velocity measurements at the 1st, 5th, 15th, 20th, 25th, 30th, 

35th and the 39th levels. Only one acceleration measurement is placed at the 1st level leading to a 

full-rank feedthrough matrix. Fig. 3(a) shows that the noise of input estimation by the GDF-WDF is 

significantly amplified compared to the UF. Figs. 3(b) and (c), despite both filters correctly predicting 

the displacement, the velocity estimated by the GDF-WDF is much noisier than the UF. This outcome 

stems from the different inversion mechanisms embedded within the specific structures of the two 

filters. The system inversion in the UF is well-conditioned, resulting in enhanced estimation quality. 
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(a) 

 

 

(b) 
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(c) 

Figure 3 Estimation results by the UF and GDF-WNDF: (a) input, (b) velocity and (c) displacement. 

 

Rank-deficient feedforward matrix  

The GDF-WNDF is only applicable to systems without direct feedthrough, i.e., no acceleration 

measurements. The GDF-WDF can only be used for systems with a full-rank feedforward matrix; that 

is, the minimum number of acceleration observations must be equal to or greater than the number of 

unknown inputs. However, the developed UF consistently remains applicable as long as the minimum 

number of measurements (of any type) is equal to or greater than the number of unknown inputs. 

The eight-storey shear frame is again considered to demonstrate the performance of the UF for a 

rank-deficient feedforward matrix. The structure is excited by two triangular impact loads applied on 

the first and the top levels. The duration of the two impacts is s, with the same peak value of  

N. The impact on the first level occurs at  s, whereas the impact on the top level occurs at  s. 

Given that the impact load efficiently excites all the structural modes, a full-order model that 

integrates all eight modes is used as the process equation. The arrangement of sensors includes a 

displacement measurement and an acceleration measurement at level 1, a velocity measurement at 

level 8, and a displacement measurement at level 7. Since there are two unknown inputs and only one 

acceleration measurement, neither the GDF-WDF nor the GDF-WNDF can be deployed. On the 
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contrary, the UF keeps numerical stability under this sensor network. As shown in Fig.4, the 

estimations of displacement, velocity, and loads match closely the correct values. 

 

(a) 

 

 

(b) 
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(c) 

 

(d) 

Figure 4 Inverse analysis by the UF: (a) the first impact load, (b) the second impact load, (c) velocity of 

the 4th level, and (d) displacement of the 4th level. 

 

CONCLUSIONS 

A novel recursive filtering method designated Universal Filter (UF) was proposed to jointly estimate 

the inputs and state of a linear structural system. The presented algorithm does not require any 

assumption in the process equation or statistics for unknown inputs. Estimation error equations were 
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derived, and the corresponding covariance equations were presented in a closed form without 

simplifications. Furthermore, the input and state gains were formulated to minimise the estimation 

error variances, thus achieving a minimum-variance unbiased estimation. The proposed algorithm 

was shown to have universal applicability to systems with and without acceleration measurements 

disregarding the rank condition of the feedforward matrix. Two numerical models were used to 

demonstrate the efficiency of the algorithm, and the results showed the presented method has an 

enhanced performance over those existing algorithms. 

 

REFERENCES 

Barbella, G., Perotti, F., & Simoncini, V. (2011). Block Krylov subspace methods for the computation of 

structural response to turbulent wind. Computer methods in applied mechanics and engineering, 

200(23-24), 2067-2082.  

De Callafon, R. A., Moaveni, B., Conte, J. P., He, X., & Udd, E. (2008). General realization algorithm 

for modal identification of linear dynamic systems. Journal of engineering mechanics, 134(9), 

712-722.  

Ebrahimzadeh Hassanabadi, M., Liu, Z., Eftekhar Azam, S., & Dias-da-Costa, D. (2023). A linear 

Bayesian filter for input and state estimation of structural systems. Computer-Aided Civil and 

Infrastructure Engineering. https://doi.org/10.1111/mice.12973  

Erazo, K., Sen, D., Nagarajaiah, S., & Sun, L. (2019). Vibration-based structural health monitoring 

under changing environmental conditions using Kalman filtering [Article]. Mechanical Systems and 

Signal Processing, 117, 1-15. https://doi.org/10.1016/j.ymssp.2018.07.041  

Gillijns, S., & De Moor, B. (2007a). Unbiased minimum-variance input and state estimation for linear 

discrete-time systems. Automatica, 43(1), 111-116. https://doi.org/10.1016/j.automatica.2006.08.002  

Gillijns, S., & De Moor, B. (2007b). Unbiased minimum-variance input and state estimation for linear 

discrete-time systems with direct feedthrough. Automatica, 43(5), 934-937. 

https://doi.org/10.1016/j.automatica.2006.11.016  

Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction Problems. Journal of Basic 

Engineering, 82(1), 35-45. https://doi.org/10.1115/1.3662552  

Kitanidis, P. K. (1987). Unbiased minimum-variance linear state estimation. Automatica, 23(6), 

775-778. https://doi.org/10.1016/0005-1098(87)90037-9  

Lourens, E., & Fallais, D. J. M. (2019). Full-field response monitoring in structural systems driven by a 

set of identified equivalent forces. Mechanical Systems and Signal Processing, 114, 106-119. 

https://doi.org/10.1016/j.ymssp.2018.05.014  

https://doi.org/10.1111/mice.12973
https://doi.org/10.1016/j.ymssp.2018.07.041
https://doi.org/10.1016/j.automatica.2006.08.002
https://doi.org/10.1016/j.automatica.2006.11.016
https://doi.org/10.1115/1.3662552
https://doi.org/10.1016/0005-1098(87)90037-9
https://doi.org/10.1016/j.ymssp.2018.05.014


 
 

 

 

 

  24 

 

 

 

 

 

Lourens, E., Papadimitriou, C., Gillijns, S., Reynders, E., De Roeck, G., & Lombaert, G. (2012). Joint 

input-response estimation for structural systems based on reduced-order models and vibration data 

from a limited number of sensors. Mechanical Systems and Signal Processing, 29, 310-327. 

https://doi.org/10.1016/j.ymssp.2012.01.011  

Lourens, E., Reynders, E., De Roeck, G., Degrande, G., & Lombaert, G. (2012). An augmented Kalman 

filter for force identification in structural dynamics. Mechanical Systems and Signal Processing, 27, 

446-460. https://doi.org/10.1016/j.ymssp.2011.09.025  

Ma, Z., Choi, J., & Sohn, H. (2023). Three-dimensional structural displacement estimation by fusing 

monocular camera and accelerometer using adaptive multi-rate Kalman filter [Article]. Engineering 

Structures, 292, Article 116535. https://doi.org/10.1016/j.engstruct.2023.116535  

Maes, K., Iliopoulos, A., Weijtjens, W., Devriendt, C., & Lombaert, G. (2016). Dynamic strain 

estimation for fatigue assessment of an offshore monopile wind turbine using filtering and modal 

expansion algorithms [Article]. Mechanical Systems and Signal Processing, 76-77, 592-611. 

https://doi.org/10.1016/j.ymssp.2016.01.004  

Papadimitriou, C., Fritzen, C.-P., Kraemer, P., & Ntotsios, E. (2011). Fatigue predictions in entire body 

of metallic structures from a limited number of vibration sensors using Kalman filtering. Structural 

Control and Health Monitoring, 18(5), 554-573. https://doi.org/10.1002/stc.395  

  

https://doi.org/10.1016/j.ymssp.2012.01.011
https://doi.org/10.1016/j.ymssp.2011.09.025
https://doi.org/10.1016/j.engstruct.2023.116535
https://doi.org/10.1016/j.ymssp.2016.01.004
https://doi.org/10.1002/stc.395


 
 

 

 

 

  25 

 

 

 

 

 

A Breakthrough in Deterioration and Damage Detection for Building Structures 

Vahid Reza Gharehbaghi1, Ehsan Noroozinejad Farsangi2* 

1School of Civil Engineering, University of Kansas, Lawrence, KS 66045, USA 

2 Urban Transformations Research Centre, Western Sydney University, NSW, Australia 

*Email: ehsan.noroozinejad@westernsydney.edu.au  

 

Abstract 

In the field of structural health monitoring (SHM), the detection of structural anomalies in intricate 

systems remains a paramount challenge. A novel signal-based supervised approach is proposed for 

the precise detection of deterioration and damage in building structures. Central to this method is the 

signal simulation-based feature selection (SSFS) algorithm, which effectively extracts sensitive 

features solely from baseline signals across diverse structure types. The findings demonstrate the 

method's efficacy, presenting it as a promising alternative to conventional techniques requiring 

additional data. The introduced damage identification procedure (DIP) approach integrates the SSFS 

methodology, emphasizing its reliance on baseline signals and obviating the need for structural 

information. Leveraging wavelet transform and statistical indices, the study showcases the method's 

success in real-world case studies, highlighting its potential for widespread application and future 

research to address the critical task of identifying structural defects in complex systems within the 

realm of SHM. 

Case Studies 

There are two case studies in this study as shown in Figure 1:   

a) Damage Case 

A complete three-storey reinforced concrete framework was simulated utilizing the IDARC software. 

In this illustrative case study, deterioration is defined as a consistent reduction in the cross-sectional 

area of the structural elements. 

b) Deterioration Case 

The experimental setup comprises a framework featuring aluminium columns and floor panels. 

Various simulations of damage were executed through alterations in mass substitution and 

adjustments in column stiffness. 

mailto:ehsan.noroozinejad@westernsydney.edu.au
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(a) Damage Case (b) Deterioration Case 

Figure 1 (a) Damage case and (b) Deterioration Case 

 

Damage Identification Procedure (DIP) 

As shown in Fig. 2, the initial step involves deriving a structural pattern solely from baseline 

responses. Subsequently, this pattern, indicative of the structure's condition, is employed in the 

subsequent stage for defect identification based on present responses. After elucidating each stage, 

the method is then implemented on two distinct models to evaluate its effectiveness. 
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Figure 2 Flowchart of Damage Identification Procedure (DIP) 

 

Phase One 

The intricate nature of buildings arises from interconnected responses across multiple tiers, adding 

complexity compared to simpler structures. Some attributes can adeptly differentiate between 

baseline and damage signals, while others lack the required sensitivity. In response, a fresh approach, 

denoted as signal simulation-based feature selection (SSFS), is introduced. It facilitates the extraction 

of precise features from baseline signals, encompassing distinct response categories. 

By utilising baseline responses, the simulation of damage and deterioration conditions is executed, 

obviating the necessity for current system state knowledge. These simulated signals are then 

harnessed to extract sensitive features capable of discerning diverse structural conditions. This is 

achieved through parameter adjustment of the autoregressive (AR) time series model, presented as 

follows: 
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(1) 

 

In the context of the formula, sj denotes the standard acceleration signal during the jth time interval. 

The term εj corresponds to the residual parameter at the same time step. The coefficient αi pertains to 

the ith degree of p, while sj-i signifies the prior response at (j -i)th instance. To establish the baseline 

state, a simulation of deterioration and damage is accomplished by channelling the AR parameters 

through a damage function, expressed as: 

 (2) 

 

where, θ represents magnitude, and δ signifies bias in the function. We assume values of 0.01 for 

magnitude and 0.1 for bias in both deterioration and damage cases. Figure 3 illustrates simulated 

signals from the baseline structure. In contrast to damage simulation, deterioration-induced 

variations are less prominent. 

 

(a) Damage Records 
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(b) Deterioration Records 

Figure 3 Simulated signals from the baseline structure 

Phase-Two 

In this phase, the seamless pattern derived from the prior stage is engaged to assess the structure's 

conditions through present responses. In pursuit of this objective, the current responses undergo 

preliminary processing, as previously explained. In this processing phase, the smooth pattern is 

applied to the signals employing Discrete Wavelet Transform (DWT) to unveil the inherent signal 

behaviours. Subsequently, pattern recognition is executed using three distinct supervised machine 

learning algorithms: Artificial Neural Network (ANN), Support Vector Machine (SVM), and K-

Nearest Neighbors (KNNs). 

 

Results and Discussion  

The subsequent outcomes demonstrated the adeptness of the proposed methodology in accurately 

detecting damage and deterioration. Consequently, this approach holds promise as a feasible 

substitute for conventional techniques demanding supplementary information. 
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Table 1 The overall accuracy of classification of deterioration in scenario 3 

Overall accuracy (%) ANN SVM KNN Average 

Story 1 98.0 75.0 75.0 82.6 

Story 2 100.0 91.7 91.7 94.4 

Story 3 96.0 91.7 100.0 95.9 

Average 98.0 86.1 88.9  

 

Table 2 The overall accuracy of classification in damage 

Overall accuracy (%) ANN SVM KNN Average 

Story 1 92.2 92.0 86.6 92.2 

Story 2 90.9 87.5 85.7 88.1 

Story 3 90.9 83.9 78.6 84.4 

Average 91.3 87.8 83.6  

 

Finally, to study the effects of distinct signal conditions and the robustness of the method, distinct 

scenarios were explored as shown in Fig. 4: 

• Case A: Raw data without whitening 

• Case B: Un-processed data 

• Case C: Non-smooth pattern (omitting the moving average filter) 

• Case D: One-half of the original data 

• Case E: One-fourth of the original data 

• Case F: Sampling rate reduced by half  

• Case G: Sampling rate reduced by a quarter  
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(a) Processing effect 

 

(b) Signal length effect 
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(c) Sampling rate effect 

 

(d) Pattern type effect 

Figure 4 Effects of distinct signal conditions 
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Concluding Remarks 

In the annals of algorithmic research, the novel feature selection methodology elucidated in this 

manuscript proffers advantages that are poised to catalyze future investigations. The SSFS, a salient 

outcome of our rigorous research endeavours, possesses an array of distinctive attributes, as 

delineated below: 

• Its adaptability is manifest in its compatibility with an array of clustering algorithms, notably the 

Self-Organizing Map (SOM), Hierarchical Clustering, and the quintessential k-Means Clustering. 

• It accommodates diverse signal processing paradigms, spanning the gamut from HHT and PCA to 

CWT and STFT, demonstrating its inherent versatility. 

• Eschewing constraints with regard to structural taxonomy, the SSFS is efficacious across diverse 

infrastructural entities – be it the expansive realm of bridges, the intricate lattice of space frames, 

or the mechanistic realms of rotary motors. 

• A cardinal feature of the SSFS is its autonomous capability to discern and extrapolate sensitive 

features pertinent to both incipient and overt structural anomalies. 

• The analytical metrics adopted in our treatise exhibit modularity, allowing the facile integration of 

alternative signals or sophisticated statistical indices. 

In conclusion, the SSFS stands as a paragon of innovation, auguring propitious avenues for 

subsequent academic explorations. 
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Conference News  

• The 15th Australian Network of Structural Health Monitoring Workshop & The Smart 

Infrastructure Summit 2023, 23rd - 24th November 2023, Townsville, Australia,  

https://www.anshm.org.au/. 

• The 12th International Conference on Structural Health Monitoring of Intelligent 

Infrastructure (SHMII-12), ANSHM Special Session, entitled “Towards Sustainable and 

Resilient Infrastructure” (SS121), 19th - 22nd October 2023, Hangzhou, Zhejiang, China,  

https://www.shmii-12.com/.  

• The 10th Asia-Pacific Young Researchers and Graduates Symposium, 6th – 8th December 

2023, Perth, Australia, https://yrgs2023.com/. 

• Technology Convergence 2023 “Setting the Wheels in Motion – Reimagining the Future of 

Heavy Vehicles, Roads and Freight”, jointly organised by the International Society for 

Weigh-In-Motion (ISWIM) and the International Forum for Heavy Vehicle Transport & 

Technology (HVTT Forum), 6th -10th November 2023, Brisbane, Australia,  

https://www.techconverge23.org/.  

• The 26th Australasian Conference on the Mechanics of Structures and Materials, 3rd - 6th 

December 2023, Auckland, New Zealand,  https://www.acmsm26.com/. 

• The 14th International Workshop on Structural Health Monitoring (IWSHM), "Designing 

SHM for Sustainability, Maintainability, and Reliability." will be held on September 12th - 

14th, 2023, at Stanford University, United States, https://iwshm2023.stanford.edu/. 

• SPIE SSN06: Sensors and Smart Structures Technologies for Civil, Mechanical, and 

Aerospace Systems 2024, 25 - 28 March 2024, Long Beach, California, United States, 

https://spie.org/SSN06. 

 

 

 

https://www.anshm.org.au/
https://www.shmii-12.com/
https://yrgs2023.com/
https://www.techconverge23.org/
https://www.acmsm26.com/
https://iwshm2023.stanford.edu/
https://spie.org/SSN06
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Social Media 

Follow us at the next social media and webpages: 

➢ ANSHM Facebook webpage: www.facebook.com/ANSHMAU  

➢ ANSHM Facebook group: www.facebook.com/groups/ANSHM  

➢ ANSHM LinkedIn group:  

www.linkedin.com/groups/ANSHM-Australian-Network-Structural-Health-4965305  
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Call for Articles  

Interested in publishing an article in ANSHM newsletter, please register here: 

https://docs.google.com/document/d/1XJX9qhxEfIkXSVluWDV5rvROuYySM-hWn-q9n80-Tzw/edi

t?usp=sharing  

Edition Submission Deadline Distribution 

Spring 15 Feb Early March 

Summer 15 May Early June  

Fall 15 Aug Early Sep 

Winter 15 Nov Early Dec 
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