14th ANSHM Annual Workshop, 24-25 Nov 2022, UTS

CRICOS No. 00233E

Preliminary investigation of key factors in pedestrian bridge health monitoring using cost-effective IoT platform

Prof. Hong Guan¹, Huiyue Qiao¹, A/Prof. Yong Zhu¹, Dr. Shoja Jamali²

^{1.} School of Engineering and Building Environment, Griffith University ^{2.} KBR. Inc.

Queensland, Australia

Outline

- Footbridges
- IoT-based SHM
- Proposed research plan
- Key factors
- Summary

Footbridges

- Designed for pedestrians, may involve cyclist; lighter than vehicular bridges; more vulnerable to vibrations
- Span ranges: small (< 20m); medium (20-50m); long (> 50m)

Benefits

- Landmarks
- Connect different communities
- Ensure safe crossing over water, traffic, railroads, etc
- Provide easier access for anyone who is disabled

Cable-stayed

Collapse events of footbridges

Footbridge	Causes of failure	Casualties	Figures
Morbi bridge, Gujarat (2022)	 Overloading Rusted cables Overload Overload Reopen early after repairs without required certificate Large swinging 	135 killed	
CST bridge, Mumbai (2018)	 Irresponsible and negligent structural audit: failed to point out an impending failure 	6 killed, 35 injured	
Florida International University – Sweetwater UniversityCity bridge, Florida (2018)	 Failure of recognising danger pr conapsing during inspection Notable structural cracks on concrete truss Design deficiencies 	6 killed, 10 injured, 8 crushed vehicles underneath	Green: collapsed parts Blue: not installed Red: truss underwent post-tension rod tensionint
Troja footbridge, Prague (2017)	 Cable corrosion Unreliable inspection Impact of 2002 flood 	4 injured	
Navvies bridge, Cumbia (2009)	Extreme weather Intense rainfall produced extreme river loads that overwhelmed the bridges Traffic underneath, truck collision, etc	1 killed	
Bhagalpur pedestrian bridge, Bhagalpur (2006)	 150-year-old pedestrian bridge (being dismantled) collapsed onto a railway train as it was passing underneath 	33 killed	4

Serviceability for footbridges

Millennium Bridge, London "Wobbly Bridge"

- Unexpected lateral vibrational mode due to resonant structural response
- Energy exerted on the bridge from unsteady pedestrians to keep balance — more wobbly bridge
- Synchronous lateral excitation

Serviceability for footbridges - <u>Human comfortability</u>

Dynamic response of the bridge:
Human-induced vibration + Equation of motion (MDOF)Vibration:
• Mass
• Damping
• Stiffness
• External force

Serviceability limit state (SLS) in Australian Bridge Code (AS5100:2017): 5 Hz & 1/600 span (vertical)

Introduction to IoT - Cyber network of physical objects

IoT architecture for SHM applications

Benefits

- Real-time test data
- Cloud-based data storage systems
- Remote data access
- Cohesive device connectivity
- Improve efficiency of existing SHM systems

From "Structural health monitoring of civil engineering structures by using the internet of things: A review," by Mishra, M., Lourenco. P.B., & Ramana. G.V. (2022), *Journal of Building Engineering(48)*,103954.

Challenges in IoT based SHM

Oueensland, Australia

Current research gaps in IoT based SHM

Case study - GU cable-stayed footbridge

- Built in January 2007;
- Connect the northern campus with the student accommodation center and the GELI building on the southern side over Smith St Motorway;
- 96m long span (63m main + 33m back span), 4m wide deck (steel plate box);
- Single 1:10 sloped tower, 40m high (box section), 5 sets of anchors, 60mm & 75mm VSL MT600 bars for stays;
- Back stay anchors installed on the southern abutment to control deflections of the tower.

Issues:

- Noticeable vibration
- Bolt corrosion
- Partial anchor bolt missing in abutment

Case study - GU cable-stayed footbridge

IoT based SHM for GU footbridges

Key factors - <u>Cost-effectiveness</u>

Sensor:

Ø Location

- Based on numerical model
- Calibration
 - Validation test in laboratory (simply-supported beam)
- Ø Energy concern: data acquisition & transmission
 - Solar panel
 - Event-driven: rush hours + extreme weather condition
 - Edge computing: raw data filtering
 + classification
 (development board)

Cloud storage and computing:

- Automated damage & unusual dynamic movement detection
 - Machine learning: damage sensitive features
 - a. <u>Model-based</u>: numerical analysis (grillage + FE) & Modal Assurance Criterion (MAC), etc. b. <u>Data-driven</u>: Artificial Neural Networks (ANNs)

Data analysis:

- Case study (data from sensors)
- Numerical analysis (grillage + FE)
- Obtain indicators with serviceability consideration with the interaction of the following features: human-induced vibration, ambient vibration (temperature, humidity, wind interaction)

Performance indexes:

- SLS parameters (vibration, deflection, elastic stress, etc.)
- Minimised uncertainty
- Industry guide

- Pedestrian bridge health monitoring using cost-effective IoT platform
- Serviceability consideration
- IoT-based SHM for footbridges: machine learning; indicators; performance indexes

THANK YOU

Any question ?

