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President Message 

Tommy Chan 

Professor in Civil Engineering, Queensland University of Technology  

 

Dear All, 

 

Last year, when I was preparing the President Message for the June Issue of our Newsletter (Issue 16, 

2018), I was also preparing the flyer for our proposed ARC Industrial Transformation Training Centre 

for SHM (ATCSHM). At that time, I collected a lot of information about the bridge collapses all over 

the world, when the latest collapse was the collapse of the Florida International University (FIU) 

Bridge on 15 March 2018 killing 6 people. Then on 14 August, another bridge collapse tragedy 

(Collapse of the Morandi Bridge, Italy) happened in Italy killing more people. I commented 

previously that the FIU  Bridge used a new material, self-cleaning concrete and a new construction 

method, adopting the so-called ABC (Accelerated Bridge Construction) technology. The Morandi 

Bridge was also a new design at its time. These collapses alert us that we need to know more about the 

actual behaviour and performance of new materials, new designs of structural systems and new 

construction methods, in both the short and long terms with SHM systems installed in new types of 

infrastructure, we are better able to gather performance information and gain a better understanding 

of their behaviour. This will not only enhance infrastructure safety during the early stages of 

construction but  will also provide new information to validate the design assumptions as well as to 

improve future designs.  
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Civil infrastructure, such as buildings, bridges, roads, dams and tunnels; and energy infrastructure, 

such as gas pipelines, oil platforms and wind turbines are built to last several decades. However, we 

are well aware that during their service lives, progressive deterioration and sudden damage can occur 

due to changes in vehicle loads, environmental effects and random events such as impacts and 

earthquakes. For example, increases in traffic speed and loads can accelerate the deterioration of 

ageing bridges leading to structural failure which causes disruption in the transport system and 

economic losses. Retrofitting and/or reconstruction of failed infrastructure involve large costs for 

infrastructure owners. The majority of infrastructure th at Australians will use in the next 15 years 

(and indeed the next 50 years) has already been built. However, this infrastructure will require 

substantial additional funding for maintenance, renewal and upgrade as population and usage grows. 

Moreover, it has been observed that sections of Australiaôs infrastructure asset are already in poor or 

declining condition . These significant engineering challenges can be addressed through health 

monitoring which can track infrastructure safety and detect the onset of damage in a timely manner 

to enable appropriate retrofitting to be carried out, thereby protecting our national infrastructure 

systems. Furthermore, to achieve cost-effective, durable and efficient infrastructure for the future, it 

is critical to test, adj ust and select the best material science solutions, to inform the efficient design 

and manufacture of new advanced construction materials and components. Therefore, to achieve all 

these benefits, the establishment of the proposed Training Centre (ATCSHM) is necessary and timely. 

Actually , the year 2018 is one of the years with high number of bridge collapses with at least 10 bridge 

collapses in the year. These 10 bridge collapses happened all over the world, with 3 in America (1 in 

Central America, 1 in North America, 1 in South America), 5 in Asia, 2 in Europe, killing more than 73 

people. Two of them were collapsed during construction, and some were caused by design flaw and 

some were caused by ageing bridges with too heavy vehicle.  

Australia also has a number of bridge collapses in its history. Below is a table showing at least 6 

bridge collapses, partial or fully, happened previously. 

 

Year Location/Bridge  State No. 

Killed  

Possible Cause Reference 

1926 Fremantle 

Railroad Bridge  

WA Nil  Flood https://tro ve.nla.gov.au/newspaper/articl

e/51361959 

1962 King Street 

Bridge  

VIC Nil  Toe Cracks 

developed after 

welding without 

being discovered 

during 

construction  

https://web.archive.org/web/2013051608

0709/http://prov.vic.gov.au/wp -content/

uploads/2012/02/VPARL1963 -64No11.pd

f  

https://web.archive.org/web/20130516080709/http:/prov.vic.gov.au/wp-content/uploads/2012/02/VPARL1963-64No11.pdf
https://web.archive.org/web/20130516080709/http:/prov.vic.gov.au/wp-content/uploads/2012/02/VPARL1963-64No11.pdf
https://web.archive.org/web/20130516080709/http:/prov.vic.gov.au/wp-content/uploads/2012/02/VPARL1963-64No11.pdf
https://web.archive.org/web/20130516080709/http:/prov.vic.gov.au/wp-content/uploads/2012/02/VPARL1963-64No11.pdf
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1970 West Gate Bridge VIC 35  Collapse during 

construction  

https://www.theage.com.au/national/vict

oria/forty -years-on-the-west-gate-bridge-

collapse-still -looms-large-20101015-16nl0.

html  

1975 Tasman Bridge TAS 12  Ore freighter 

collided with 

pylons 

https://web.archive.org/web/2012031706

1918/http://www.em.gov.au/Documents/

Tasman_Bridge_disaster_25th_anniversa

ry_memor ial_service.pdf  

 

1977 Granville 

Railway Bridge 

NSW 84  Derailed train 

collided with a 

pier 

http://www.granvillehistorical.org.au/gra

nville -history.php  

2007 Gosford Culvert NSW 5 A culvert 

collapsed  

https://www.smh.com.au/national/culver

t-tragedy-coroner-blames-council-200809

19-gdsvgs.html 

 

It can be seen that similar to other countries, the collapses could be caused by inappropriate 

inspection, design or protection. It could be seen that SHM could be very helpful to improve that.  

 

Every time after this  kind of accidents, we have some lessons learnt. However, can we do better to 

avoid the followings? 

¶ Families lost their beloved ones 

¶ Engineers lost their image 

¶ Public lost their trust in using infrastructures  

¶ Connection lost 

¶ Productivity lost  

¶ é 

For that reason, in the past 10 years, ANSHM has been working hard to promote the SHM 

technologies, especially its implementation within the country.  

 

One of the great achievements that ANSHM produced is having the latest Australian Bridge Design 

Standards (AS5100), released in March 2017, include a section on Structural Health Monitoring 

(SHM). However , it is just the first step. SHM can help improve the safety and operation of 

infrastructure systems economically, efficiently and intelligently. In turn , the monitored  data can be 

used to improve the design of advanced construction materials and structural components from the 

analysis of quantitative data and the developed physics-based models or data-driven models. The 

ATCSHM will help more effective SHM systems implemented in Australia to help reduce the 



 

  4 

 

monitoring and maintenance costs of infrastructures, and at the same time providing greater service 

life of infrastructure, greater public safety, greater production efficiency, and better design.  

 

Below are the updates of the month. 

 

ATCSHM Proposal  

According to the Key dates for Industrial Transformation Training Centres 2019 shown on the ARC 

Official Webpage, the anticipated announcement of the outcomes of the ITTC proposals in the latest 

round is scheduled in the Third Quarter 2019. Last year, it was announced in August 2018. In the past, 

it could be announced earlier. Anyway, as mentioned earlier, please keep lobbying the ATCSHM of 

ANSHM to anyone you think who may be a panel member. Please try your best to help promote the 

establishment of the ATCSHM, not only for the benefits of ANSHM, but also for the benefits and 

safety of the country. It could be seen from what I wrote above, establishing such a training Centre is 

timely and crucial for the practical implementa tion of this technology for reduced frequency of 

operational disruption, maintenance and rehabilitation costs; improved design and construction 

efficiency; and enhanced safety and performance of infrastructure. 

Actually , the needs of SHM have been realised by more and more asset owners and maintenance 

teams of various infrastructures. Just for this month (May), I have received at least three inquiries 

from the industry about how ANSHM could help them implement SHM systems for their assets or 

their clients. I also noticed two of the recent CRC proposals both include a component on SHM. I am 

so pleased to know that more and more from the Industry consider  the importance of SHM and 

include it as a component to monitor their assets and operations, agreeing that SHM will be a 

solution to many of their problems. This will make their proposals to be mo re complete. I t also 

confirms  the significance of the establishment of our ATCSHM as it is more comprehensive and 

directly focus at how SHM could be useful in different aspects as well as enhancing academic and 

industry collaboration and industry training.   

 

ANSHM 11 th  Annual Workshop  

I am pleased to inform you that we have confirmed the date for the ANSHM 11th Annual Workshop. It 

will be hosted by Griffith University, held at their Gold Coast Campus from 2 ï 3 December 2019. 

Please pencil it down in your calendar so that you will not miss this ANSHM important annual event. 

You should have received the First Announcement sent by Prof Hong Guan and Dr. Domic Ong. They 

have also created a very informative Website for the workshop 

(https://www.griffith.edu.au/cities -research-institute/news -and-events/seminars -and-events/11th-a

nshm-annual-workshop). You can find all the details including the venue, key dates, Call for Abstracts, 

https://www.griffith.edu.au/cities-research-institute/news-and-events/seminars-and-events/11th-anshm-annual-workshop
https://www.griffith.edu.au/cities-research-institute/news-and-events/seminars-and-events/11th-anshm-annual-workshop
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tentative program, travel and accommodation options, and contact details from the website. Many 

thanks to Hong and her team for working so hard to this ANSHM important annual event.  

We received a few inquiries about how many presentations that one university could have. In the past 

ANSHM workshops, it is our tradition that each university could have only one presentation. Actually , 

it also depends on how many presentations that we could accommodate. We will discuss that in our 

next EC meeting. 

 

ANSHM Technical Workshop  

Earlier the year, we were approached by a company asking us to provide training to their engineers on 

SHM. We consider that as a great opportunity as it aligns well with our objectives to raise general 

community awareness on the need for and value of SHM research and application. Therefore, in the 

last Executive Committee meeting, we appointed A/Prof Xinqun Zh u to co-organise it with the 

company as the technical workshop we co-organised with VicRoads last year. Similar to the 

VicRoads/ANSHM Technical Workshop, it will be on the basic technical aspects of SHM about its 

values, its background and how to practically apply the technologies related to SHM for monitoring 

the structural health, rather th an the latest research and development as we normally do in our 

annual workshop. We are working on the venue, the date of the workshop and other details. We will 

keep you informed about this technical workshop in due course.  

 

Special Sessions/Mini Symposia  

EASEC-16 

We have received five abstracts so far for the ANSHM special session ñRecent Research Advances on 

Innovative Techniques for Structural Health Monitoringò in the 16th East Asia-Pacific Conference on 

Structural Engineering & Construction (EASEC -16), which will be held in Brisbane, Australia on 

3rd-6th Dec 2019 (https://easec16.com.au/). So far 5 abstracts have been accepted. The deadline to 

submit full papers is due 1 July 2019. If you are still interested in attending this session, you are most 

welcome to submit the full paper to Junli@curtin.edu.au or qzkong123@gmail.com by 1 July 2019. 

 

IPDO2019 

Another ANSHM Mini Symposium is ñRecent regularization methods for dynamic load identificationò 

(http://ipdo2019.ipdos.org/Minisymposiums.html) in the Fif th International Symposium on Inverse 

Problems, Design and Optimization (IPDO2019) which will be held in Holiday Inn Riverside, Tianjin, 

China, during September 24-26, 2019. Anyone who is interested to present at this MS, please send me 

a message. 
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ANSHM S pecial Issue  

As mentioned in the last update that we are preparing to have a special issue for the presentations at 

the 10th ANSHM Workshop as well as the ANSHM Special Session in ACMSM25. We also plan to 

have this special issue to celebrate our 10th Anniv ersary. Its editors will be Yu Tao, Jun Li, Andy 

Nguyen and myself. Jun and Andy are preparing proposals to be submitted to two international 

journals for their conside ration. More details and call for abstracts will be forwarded in due course.  

 

Executive Committee Meeting  

We will have our next Executive Committee Meeting to be held around mid-June. There will be a lot 

to be discussed, including Web forum, 11th ANSHM, th e technical workshop, research collaboration, 

collection of articles for the Newsletter,  preparation of technical notes as requested in the last two 

industry forums, external affairs, how we celebrate the 10th Anniversary, the achievements we made 

in the past 10 years, etc. You are also welcome to suggest some issues to be discussed. If so, please 

send me a message for an item to be included in the next EC meeting by 5 June 2019. 

 

 

Highlight of this Issue   

This issue is edited by Mehrisadat Makki Alamdari. As mentioned earlier, we will try to include more 

technical notes in our Newsletter for the industry to better understand SHM in a ódown to earthô 

manner. Mehrisadat has tried her best to include another technical note in this issue, Remote Sensing 

for Bri dge Monitoring . Many thanks to Mehri for her effort. Besides, ther e is also an interesting 

research article by Yu Xin, Jun Li and Hong Hao of Curtin University, reporting their research on 

nonlinear model updating using the instantaneous amplitudes of the decomposed dynamic 

responses.   

 

 

With kind regards,  

Tommy Chan 

President, ANSHM 

www.ANSHM.org.au  

 

 

 

 

http://www.anshm.org.au/
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Nonlinear Model Updating based on Dynamic Response Decomposition  

Yu Xin, Jun Li and Hong Hao  

 Center for Infrastru ctural Monitoring and Protection, School of Civil and Mechanical 

Engineering, Curtin University, Au stralia  

 

 

Abstract: This paper proposes a nonlinear model updating approach using the instantaneous 

amplitudes of the decomposed dynamic responses. Uncertainty quantification of the model updating 

results considering the effect of the measurement noise is conducted. The residual of the 

instantaneous amplitudes of the decomposed structural dynamic responses between the test structure 

and the analytical nonlinear model is used to construct the maximum likelihood function. Numerical 

studies on a three-story nonlinear shear type building under earthquake excitations are performed to 

verify the accuracy and performance of the proposed approach. Numerical results demonstrate that 

the proposed approach is reliable and accurate for nonlinear model updating. 

Keywords :  Nonlinear model, Instantaneous amplitudes, updating.  

Introduction  

Studies on developing reliable finite element model updating methods have been gained increasing 

attentions from engineers and researchers, and various techniques have been developed (Friswell et 

al. 1995) and successfully applied for linear and nonlinear model updating (Hemez et al. 2014). This 

process is mainly based on minimizing the differ ence between the quantitative structural 

characteristics obtained from the measured data and the analytical structural model by adjusting the 

structural model parameters. Since the number of measured structural response parameters is always 

less than the actual structural parameters in a finite element model, optimization analysis is needed in 

performin g model updating. The accuracy of deterministic model updating results depends on the 

accuracy of the initial structural model and the accuracy of the struct ural response characteristics 

extracted from the measured data (Noel et al. 2017). However, for deterministic model updating 

methods, the effect of uncertainties on the model updating results needs to be carefully considered. 

The uncertainties in the model  updating usually arise from the measurement noise in the response 

data and the modeling errors in the structure. Accounting for the propagation effect of these 

uncertainties on the model updating process and results have attracted significant attention in  recent 

years (Xia et al. 2002). 

One possible approach to deal with these uncertainties in model updating is using a probabilistic 

framework based on the well-known Bayesian theorem (Simoen et al. 2013 & Yuen et al. 2011). The 
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initial Bayesian approach for  parameter estimation in model updating considering uncertainty was 

developed (Beck et al. 1998 & Katafygiotis et al. 1998). Behmanesh et al. (2015) proposed a 

hierarchical Bayesian FEMU method for uncertainty quantification and damage identification of 

structural systems. Wan et al. (2015) proposed using an efficient Bayesian inference method with 

delayed rejection adaptive Metropolis (DRAM) algorithm to refine the FEM of a four -span pedestrian 

bridge considering the uncertainty in identified modal propert ies. 

This paper proposes using a nonlinear model updating approach based on the instantaneous 

ampli tudes of the decomposed dynamic responses. The uncertainty effect from the measurement 

noise in response data is considered. The instantaneous parameters of mono-components are firstly 

extracted from the response signal by using analytical mode decomposed (AMD) method (Wang et al. 

2013) and Hilbert Transform. The nonlinear model parameter updating problem is formulated as the 

Maximum Likelihood Estimation (MLE ). The optimization problem of MLE is solved with a 

gradient-based interior point algorithm (Byrd e t al. 2004), and the uncertainty quantification of the 

identified nonlinear model parameters is conducted by using the Cram-Rao lower bound (CRLB) 

theorem (Kay et al. 1993). To validate the accuracy and effectiveness of the proposed nonlinear model 

updatin g approach, numerical studies on a three-story nonlinear shear type structure under the 

earthquake excitation are conducted. 

 

Theory  

Time frequency analysis  

For an n DOF nonlinear system, the equation of motion can be written as 

                         (1) 

in which ,  and  are time-varying mass, damping, and stiffness matrices, 

respectively. ( )tf is the excitation force vector. For a nonlinear structure, the nonlinear restoring force 

as function of time can be transformed into a multiplication form  with a new time-varying 

stiffness matrix  and a system solution with an overlapping spectrum (Feldman, 1994). 

Similarly, the nonlinear damping force can also be transformed into a function of time as a 

multiplication  between the time-varying damping coefficient matrix  and the 

velocity .  
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Dynamic responses of Eq. (1) can be taken as a combination of several mono-components with 

time-varying frequency and amplitude. The measured response of the lth degree  can be 

expressed as the function of mono-component  

                                     (2) 

Since the frequencies of the responses of a nonlinear structure often change with time, the extended 

AMD (Wang et al. 2013) is used to decompose the time-varying vibration signal.  

The analytical signal of the i th decomposed response  can be expressed as 

                       (3) 

in which and are the instantaneous amplitude and frequency of a decomposed 

non-stationary signal , respectively. In Eq. (3),  represents the amplitude information of , 

and  reflects the instantaneous phase information of the decomposed signal. The instantaneous 

frequency and amplitude can be used to describe the characteristics of a non-stationary signal.  

 

Nonlinear model updating and uncertainty quantifi cation  

In this section, instantaneous amplitudes extracted from measured acceleration responses are used 

for nonlinear model updating. The identified instan taneous parameters of acceleration responses can 

be expressed as 

                           (4) 

where  is the instantaneous acceleration amplitude of the mth mono-component at the time 

instant t.  
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The instantaneous amplitudes extracted from the measured acceleration responses may be 

different from those calculated f rom the analytical responses with the structural finite element model. 

The difference can be defined as 

                                 (5) 

                       (6) 

in which  is the vector of nonlinear model parameters,  is the instantaneous amplitude 

vector identified from measured acceleration response, and represents the difference in the 

instantaneous amplitudes between the test and analytical results. Generally, the residual  

mainly stems from measurement noise and modeling error (Simoen et al. 2013 & Yuen et al. 2011). 

The measurement noises in the recorded acceleration responses are assumed as stationary and 

independent Gaussian white noises with zero means. Therefore, the difference vector could 

also be considered as a Gaussian white noise process. Based on this assumption, the nonlinear model 

updating can be formulated as the following optimization problem  

  

                       (7) 

Solving the optimization problem as shown in Eq. (7) can be derived based on Bayesian framework 

and the MLE methods when a Gaussian white noise simulation error is assumed (Yuen et al. 2011). 

Therefore, the unknown model parameters  in Eq. (7) can be considered as stochastic variables 

based on Bayesian strategy for parameter estimation. External excitation information on the 

structures is assumed available for the nonlinear model updating in this study.  

The residuals in the instantaneous amplitudes extracted from acceleration responses between 

measured data and the analytical nonlinear model can be considered as a Gaussian white noise 

process with . MLE of  can be expressed as  

   (8)  
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The parameter estimation problem in Eq. (8) can be transformed as a constrained nonlinear 

optimization problem by setting a feasibility range for the nonlinear model parameter s and the initial 

error variances (i.e.,  and ). This optimization problem  is solved by 

using a gradient-based interior point method (Byrd et al. 2004), and the optimization algorithm is 

available in the MALAB optimization toolbox  (MATLAB, 2017a). 

After the nonlinear modal parameters  and error variances of the instantaneous acceleration 

amplitudes , CRLB method is used to quantify the uncertainty effect based on the obtained   and 

 from the Bayesian nonlinear model updating approach.  

Numerical Verification  

Instantaneous paramete rs identification  

The finite element model of a two-dimensional three-story nonlinear shear frame, as shown in Fig. 1, 

is built by using finite element anal ysis software Opensees. The height of the fame column in each 

story is 3m, with a total length of 9m , and the length of all beams are set as 6m. The fiber section is 

selected to define all column and beam elements, and the detailed size of cross-sections are shown in 

Fig. 1. In this simulation, the columns of the first -story are defined as Bouc-wen hysteretic material 

model (Wang et al. 2015 & Ikhouane et al. 2007), and others columns and beams are defined as 

linear -elastic components. The Bouc-Wen model parameters are defined 

as , , , , , n=1 and A=1. In the Bouc-Wen model,  represents the 

ratio of the post-yield stiffness to the initial elastic stiffness; A, and  control the shape of hysteresis 

loop;  and  affect the degradation of material; n is a parameter that controls the transition from 

linear to nonlinear range. The WHOX longitudinal component from the Northridge 1994 ground 

mot ion record, as presented in Fig. 2, is selected as the applied external excitation on the model. The 

obtained acceleration response on the top floor is assumed as the measured dynamic response with a 

sampling rate of 240Hz, as shown in Fig. 3, and will be used for the signal decomposition. By using the 

procedure described in Section 2.1, the identified instantaneous amplitudes of the first and second 

mono-components from the acceleration response on the top floor are shown in Figs. 4(a) and Fig. 
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4(b), respectively. The identified instantaneous frequencies of the first two mono -components are 

shown in Fig. 5 with the slowly -varying components of the identified instantaneous frequencies 

denoted with solid lines, which represent the nonlinear structural behavio r and can be obtained by 

filtering out the fast -varying part with AMD method.  

 

Fig. 1.  A three-story nonlinear model simulated in Opensees. 

 

 

Fig. 2. Acceleration record of Northridge earthquake . 

 

   

Fig. 3.  Acceleration response at the top floor. 
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Fig. 4. The identified instantaneous amplitudes of the first two mono -components of 

acceleration response at the top floor: (a) the first component; (b) the second component.  

 
Fig. 5. The identified instantaneous frequencies of the first tw o mono-components. 

 

Bayesian based nonlinear model updating  

In Section 3.1, both the instantaneous frequencies and amplitudes of the first two mono-components 

are extracted by using AMD method with Hilbert transform, which can be used for nonlinear model 

updating. Before investigating the performance of nonlinear model updating with these selected data 

points, the assumption made in Section 2.2 with the difference vector considered as a 

Gaussian white noise process when the white noises are smeared in the measured data will be 

2nd component  

(a) 

(b) 

(b) 

1st component  
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validated first. The simulated acceleration response on the top floor added with various white noise 

levels is used for the identification.  

Based on the previous studies on nonlinear model updating with Bouc-Wen model (Wang et al. 2015), 

six parameters are the nonlinear hysteresis model parameters to be identified in this 

study. Since the parameters of the BoucïWen model are not independent, the similar responses may 

be generated with different combinations of  nonlinear model parameters, which may increase the 

difficulty in solving the optimization proble m. To reliably measure the accuracy of the updating 

results, two error indices  and  are defined as 

                                         (9)  

                              (10)   

in which and represent the slowly-varying parts of the instantaneous frequencies of the 

analytical and testing models, respectively; and are the acceleration amplitudes of the 

analytical and testing models, respectively.  represents the second-norm.    

In this study, based on the previous experience of nonlinear model updating (Wang et al. 2015), 5% 

data points uniformly s elected from the amplitudes of decomposed acceleration response are used for 

nonlinear model upda ting. The initial model parameters are set 

as: , and the range of those six model parameters 

is defined as: . The error variance of the first component  is selected as the 

error variance of Bayesian method for nonlinear  model updating. The initial error variance is set 

as , and the range of the  is defined as: . 

To further study the noise effect, the simulated accelerations with 5%, 10% and 20% white noises are 

used for the identificat ion analysis, respectively. The updated nonlinear parameters are presented in 

Table 1, and the errors are shown in Table 2. It can be seen from Tables 1 and 2 that the proposed 

approach can accurately identify the nonlinear model parameters when measurement noise levels are 

5% and 10% with the maximum relative error in the parameter identification less than 10%. For the 

case with 20% noise, the maximum value of the defined error indices is less than 15% and the 

maximum relative error in the parameter identi fication is 30% for the parameter . The uncertainty 

quantification results of these six parameters are listed in Table 3 when different noise levels are 
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considered. It can be found that the covariance of the parameter identification results gradually 

increase with the measurement noise level, which is reasonable and expected. The convergence 

processes of the six Bouc-Wen model parameters in these three cases are shown in Fig. 6 (a)-(f). A 

large number of iterations is usually required for the ca se with a higher noise in the measurement 

data. A comparison between the acceleration responses with 5% noise effect and the analytical 

response calculated with the updated parameters are shown in Fig. 7(a). The extracted instantaneous 

frequencies of the first mono -component are shown in Fig. 7(b). These results also validate that an 

accurate parameter identification is achieved with the proposed approach. 

 

Tabl e 1. Identified parameters of the nonlinear hysteretic model under different noise levels . 

Parameters 
 

   

  

Exact 1 1 1 1 1 1 

5% Noise 0.99 0.96 1.02 1.03 1.01 1.00 

10% Noise 1.00 1.04 0.96 1.09 0.98 1.00 

20% Noise 0.90 0.99 0.95 1.31 0.89 1.01 

 

Table 2.  The error indices under different noise levels 

 
  

 

5% Noise 4.51 0.10 1.03 

10% Noise 8.32 1.72 0.94 

20% Noise 14.9 2.46 1.09 

 

 


