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Giurgiutiu & Bao (2004) Struct. Health. Monitor. Animation from [www.me.sc.edu/Research/lamss/] 
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•  Guided Wave 
§  Sensitive to small and different types of damages 
§  Long travel distance 

Introduction and Background 

Fundamental symmetric mode (S0) + 
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Introduction and Background 

Challenges: 
•  Requirement of baseline data 

•  Temperature variation & effect of external loading conditions 
•  Difficult to achieve quantitative identification of damages 

Excitation


Sensor
 Damage


Incident pulse 	


reflected from beam end	



Excitation
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•  To quantitatively identify the location and size of the 
damage 

•  To improve the computational efficiency of the 
proposed damage identification method using 
frequency domain spectral finite element simulation 

•  To quantify the uncertainties associated with the 
damage identification results using a Bayesian 
approach 

•  To provide an experimental verification of the 
proposed method 

 

Objectives 
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Frequency-domain Spectral Finite Element Method 

§  Mindlin-Herrmann theory 
§  Describes the longitudinal wave using two coupled partial differential 

equations** 

§  Each element has 2 nodes & each node has 2 DoFs 
§  Account the axial displacement & lateral contraction effect 

Spectral finite element 

** Krawczuk M, Grabowska J and Palacz M, J Sound Vib 2006, 295:461-478
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Frequency-domain Spectral Finite Element Method 

§  The governing equations are reduced to two ordinary differential 
equations and assumes the solutions in the forms 

§  Formulate the dynamic stiffness matrix in frequency domain (at 
frequency        ) by considering the boundary conditions 
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Excitation signal in time domain, f(t) 

Excitation signal in frequency domain, f(ωn) for n = 1,…,N 

FFT 

Dynamic stiffness matrix K(ωn) 

Calculate displacement in frequency domain 

n = n+1 

Excitation signal in time domain, f(t) 
iFFT 

Frequency-domain Spectral Finite Element Method 

n = N 
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Frequency-domain Spectral Finite Element Method 
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§  Using the Bayes’ theorem, the probability of the set of 
uncertain damage parameters (θ) with a given set of dynamic 
data is **: 

Bayesian Approach 
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 where c is normalisation constant. 
 
 

 where J(θ) is: 

Likelihood	

 Prior distribution	



(Allow the inclusion of engineering 
judgment about the possible damage)	



Simulated signal	

Measured signal	



** Beck JL and Katafygiotis LS, J. Eng. Mech. ASCE. 1998, 124(4), 455-461


The minimisation problem is solved by Hybrid Particle Swarm 
Algorithm
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§  The updated (posterior) PDF of damage parameters for given 
data and model class can be approximated as a weighted sum 
of Gaussian distributions:  

§  The weightings are given by: 
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Bayesian Approach 
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Experimental Verification 

Backing mass

Piezoceramic 
transducer

Longitudinal guided wave
Step damage

Laser head

Aluminum beam 
Beam cross-section: 12x6 mm2 

Beam length: 2 m 
Excitation frequency: 80 kHz 
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Experimental Verification 

Preliminary study of measurement location using 3D finite element 
method (LS-DYNA) 

Scaled contour plot of displacements 
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Experimental Verification 

Preliminary study of measurement location using 3D finite element 
method (LS-DYNA) 

Reflected longitudinal 
wave propagates toward 
the beam  
end 

Flexural waves propagate 
toward the beam end 
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•  Modeshapes	
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Experimental Verification 

Longitudinal wave	


Flexural wave	
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Experimental Verification 
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Experimental Verification 

Amplifier Function generator
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Positioning 
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Experimental Verification 

Case C1 

Case C2 
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Blue line: Experimental data 
Red line: Spectral finite element simulation with identified damage parameters 
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Normalized marginal PDF of the identified damage length and depth for 
a) Case C1 and b) C2 

Experimental Verification 
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•  A method has been proposed to provide quantitative 
identification of damage in beams using longitudinal 
guided wave 

•  The method is able to identify damage location and size 
•  Frequency-domain spectral finite element has been 

employed to improve the computational efficiency 
•  The proposed method is also able to quantify the 

uncertainties associated with the damage identification 
results  

•  The proposed method has been experimentally verified 
•  The proposed method is currently extending to address 

the multiple damages situation and structures with 
complicated configurations 

Conclusions 
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Thank You! 


