

Integrated Deterioration Method for Predicting Long-term Bridge Performance: Case Studies

ANSHM-5th 18-19, Novermber, 2013 Melbourne, Australia

Authors

2

Dr Guoping Bu Research Fellow

Griffith School of Engineering, Griffith University, Queensland, Australia g.bu@griffith.edu.au

Dr Hong Guan

Smart Infrastructure Asset Management Australia (SIAMA) Research and Development Pty Ltd *j.lee@siama.com.au*

Associate Professor, Griffith School of Engineering, Griffith University h.guan@griffith.edu.au

Professor Yew-Chaye Loo AM UNIVERSITY SIAMA Internationalisation Director for Sc, Envi, Eng & Tech Group, Griffith University Chair, Board of Directors, SIAMA R&D Pty Ltd y.loo@griffith.edu.au

CONTENTS

- Background: BAM & BMS
- Limitations of the existing deterioration models
- Integrated deterioration prediction method
- Case studies & comparisons
- Conclusion

BACKGROUND Why Bridge Asset Management (BAM)? What is Bridge Management System (BMS)?

Number of Bridges in AU & NZ

5

Bridges by road type and age - Australia, 2003 (RoadFact 2005, Austroads)

	National Highways (2003)		Arteria	l roads (2003)	Local roads (1996)	
Construction Era	No. of bridges	Total areas (m ²)	No. of bridges	Total areas (m ²)	No. of bridges	Total Areas (m ²)
Post – 1976	1,556	1,092,063	3,877	2,706,935	4,194	533,461
1948 – 1976	1,026	496,611	5,430	2,184,182	4,374	552,162
Pre - 1948	154	48,178	1,805	572,239	14,652	1,283,792
Total	2,746	1,636,852	11,112	5,463,356	23,220	2,369,415

Bridges by type - New Zealand, 2003 (RoadFact 2005, Austroads)

		Single lane bridges	Speed restricted bridges	Weight restricted bridges	Timber bridges	Other bridges
State Highways	Number of bridges	180	12	4	16	3,731
	Length of bridges (m)	13,265	955	364	1,250	125,367
Local roads	Number of bridges	7,387	101	503	1,076	4,321
	Length of bridges (m)	140,868	3,148	11,934	14,854	54,860
Total	Number of bridges	7,567	113	507	1,092	8,052
	Length of bridges (m)	154,132	4,103	12,298	16,104	180,227

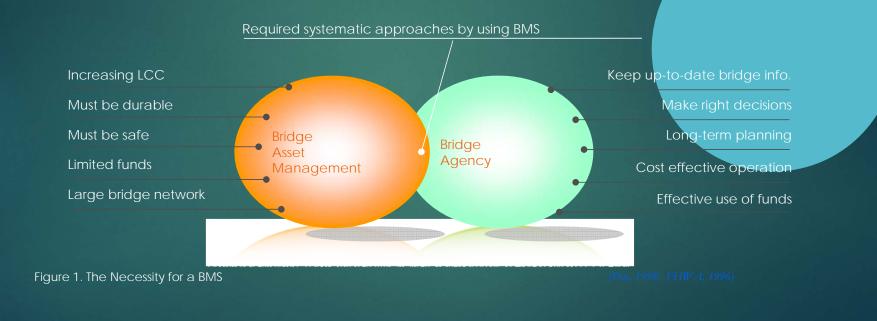
AUSTRALIAN TRANSPORT INFRASTRUCTURE STATISTICS

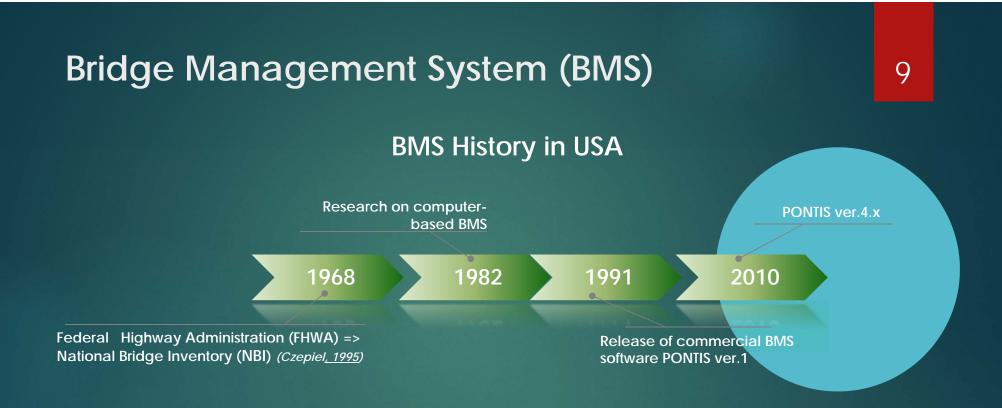
800,000 km of public roads (Road Facts 2005)

▶ 37,000 bridges (Road Facts 2005)

Bridge maintenance, repair & rehabilitation (MR&R) costs

- A\$380M in 2003 (National Transport Commission Annual Reports)
- A\$1,600M in 2012 (i.e. 320% increase in 10 years)

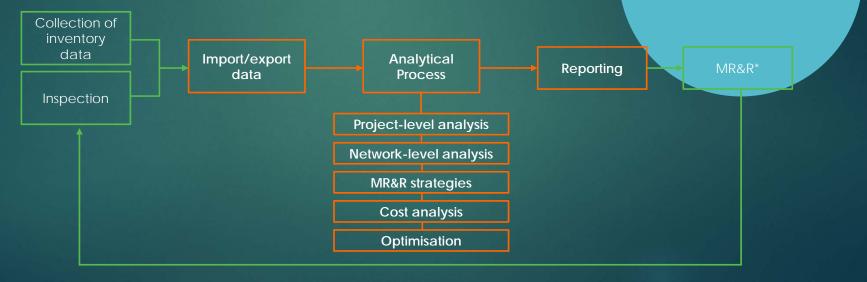

Bridge Asset Management (BAM)?

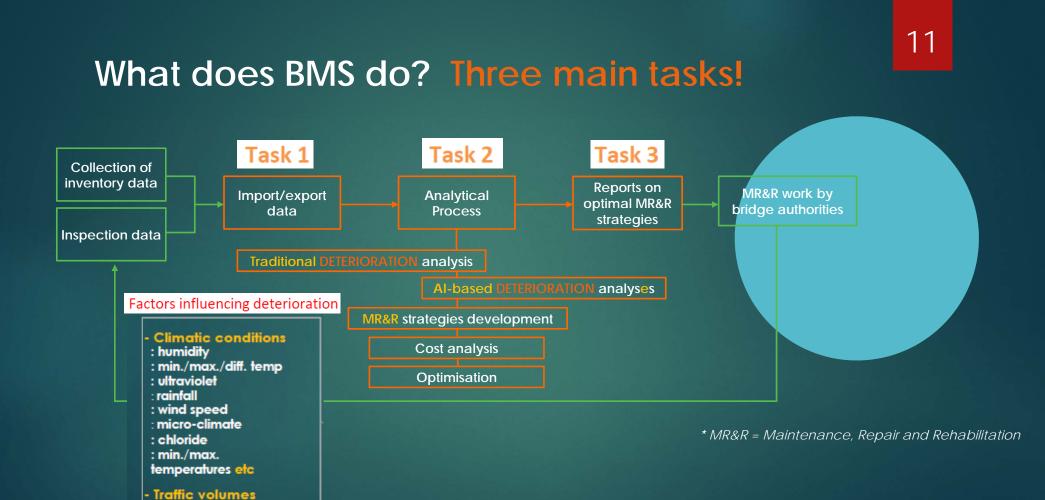

To determine and implement the best possible strategy that ensures an adequate level of safety at the lowest possible lifecycle cost (Frangopol et al., 2000)

Bridge Management System (BMS)? A systematic and scientific way to obtain the best strategies for MR&R

Bridge Asset Management (BAM)

To determine and implement the best possible strategy that ensures an adequate level of safety at the lowest possible life-cycle cost. (Frangopol et al., 2000)





Bridge Management System (BMS)

- Bridge Management System (BMS)
 - to support decision-making that assures long-term health of network; and
 - to formulate maintenance programs in line with funding limitations.

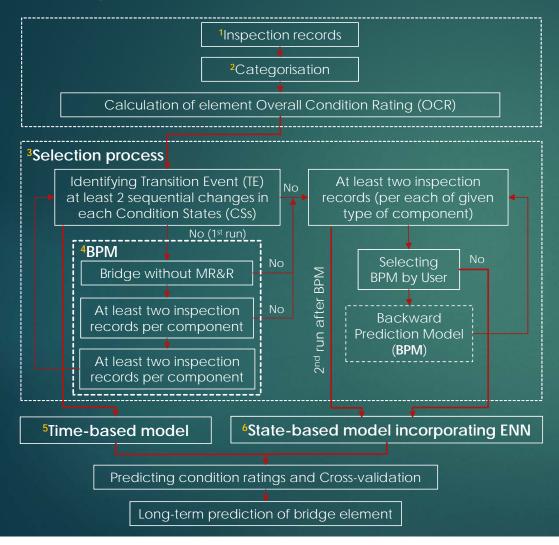
Major Tasks in Bridge Management

: ADT/ADTT

Current BMS Issues

Difficulties in bridge deterioration modeling in typical BMSs

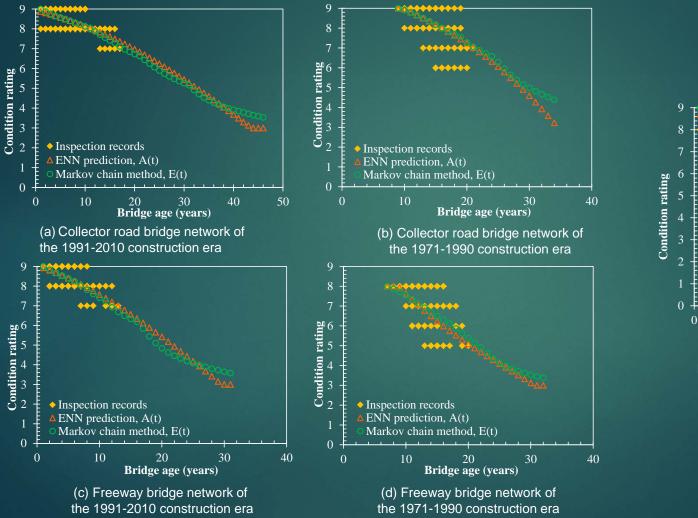
Limitations of visual-based bridge condition assessment

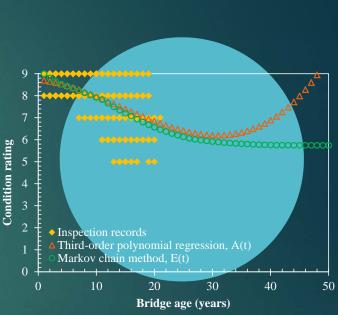

Insufficient condition rating records

> Reactive maintenance strategy

- Inconsistent condition rating results
- Large gap between condition states (CSs)
- highly depending on experienced inspector

 Difficult to detect existing condition deterioration patterns for long-term prediction

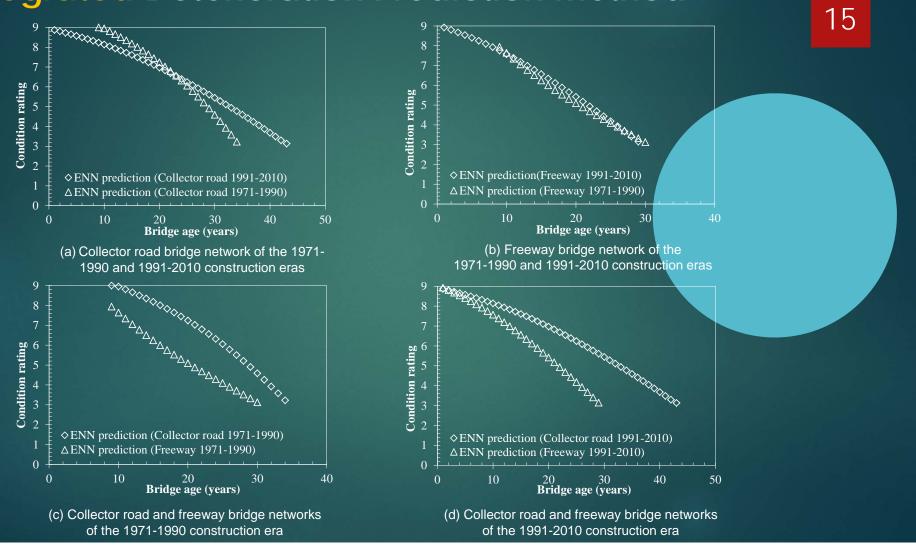

Integrated Deterioration Prediction Method



- 1. Available inspection records
- 2. Element types, material types, traffic volumes and construction eras etc.
- Automatically select the appropriate deterioration model (i.e. time or state-based)

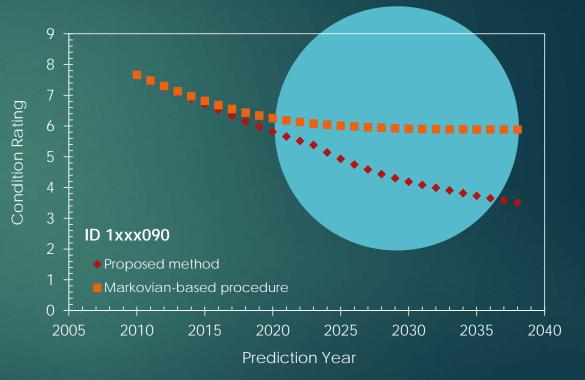
- 4. Backward Prediction Model (BPM) for generating missing historical inspection records
- 5. Generate a probability density function of time (using Kaplan & Meier method - stochastic)
- 6. Generate long-term performance curves (using Elman Neural Network technique - ENN)

Integrated Deterioration Prediction Method



14

Data distribution and bridge performance curves


Integrated Deterioration Prediction Method

Long-term Bridge Performance Prediction

Case Studies

- National Bridge Inventory (NBI) datasets
- Total of 40 bridges (464 bridge substructure inspection records)
- 315 records used as input data and remaining 149 records used for validation
- Comparisons of long-term deterioration predictions (see graph for an example – Integrated method's forecasts more meaningful)

Prediction comparisons

Comparisons of average prediction errors - the proposed method is superior to the standard Markovian-based procedure

17

Bridge ID

CONCLUSIONS & ON-GOING RESEARCH

Bridge deterioration is a big problem & bridge safety is a real concern

18

- Reliable and sophisticated BMSs are urgently needed
- The "integrated deterioration prediction" method is the latest & best-performing technique developed by the Griffith-SIAMA team

SIAMA-funded programs

- Smart and objective inspection and data collection techniques
- Automated inspection data generation processes (incorporating pattern recognition)
- Commercialisation

ACKNOWLEDGEMENTS

19

Australian Research Council Queensland's Department of Transport & Main Roads Gold Coast City Council Griffith University SIAMA R&D Pty Ltd

THANK YOU!

