

Engineering

Assessment and Management of Bridge Loading using Traffic Microsimulation

Dr Colin Caprani 5th Annual Workshop for Australian Network of Structural Health Monitoring 19 November 2013

Agenda

- 1. Introduction
- 2. Traffic Microsimulation

3. Bridge Load Assessment

- a) Evaluation of load models
- b) Calibration of load models
- c) Assessing long span load models
- d) Determining governing conditions

4. Bridge Load Management

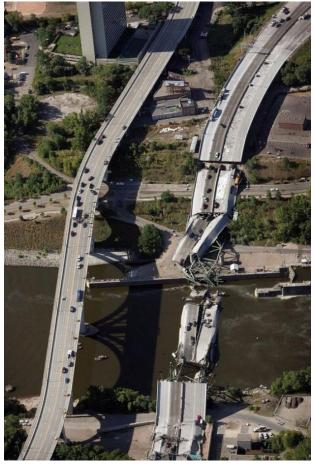
- a) Gap control
- b) Lane change control
- c) Vehicle access

5. Summary

Introduction

The challenge in Europe

- Almost 50% of Europe's 1 million bridges built before 1965 and so are close to or at the end of their 50-year design lives
- Freight transport is projected to increase by 80% by 2050 compared to 2005
- Replacement cost ~30% of Gross
 Domestic Product so it is not feasible to replace them



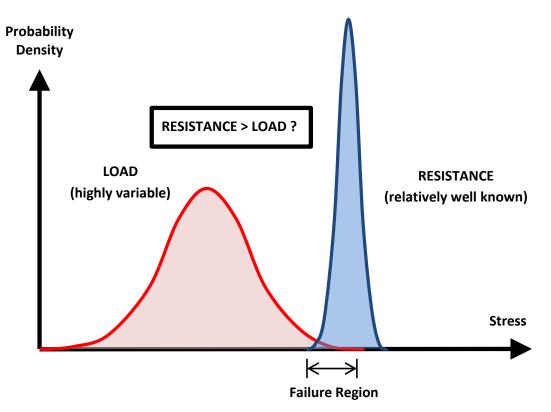
The challenge in the US

- Average age of the US bridge stock is 43 years (so nearly half at the end of their design lives)
- More than 26% of the USA's bridges are structurally deficient or functionally obsolete.
- \$140 billion is needed to repair already deficient or obsolete bridges.
- A \$17 billion annual investment is needed but only \$10.5 billion is being spent.

Minneapolis I-35W Bridge Collapse, (1 August 2007): multiple causes including heavy weight of rush hour traffic and construction equipment (NTSB 2008)

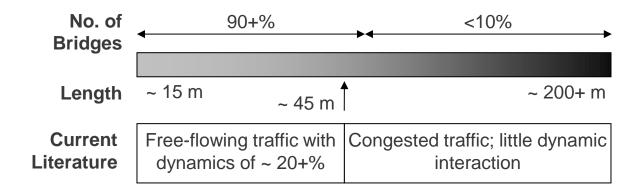
The challenge in Australia

- 70% of the bridges in Australia are ~40 years old
- Load limits are applied to around 2% of bridges in most states and deterioration is a significant problem
- Freight volume is expected to double from 2008 levels by 2030
- Extreme weather events: floods and inundations are becoming more common and can severely compromise structural integrity



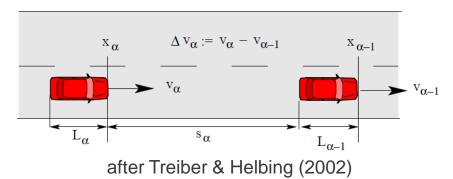
Bridge Safety Crisis, Sydney Morning Herald, 1 April 2013 http://www.smh.com.au/data-point/bridge-safety-crisis-20130331-2h1h9.html

Bridge Traffic Loading


The most variable parameter in a bridge assessment
 → accurate estimation can yield big benefits

Bridge Traffic Loading

Classic case: Assume critical traffic is either:
 Free flow + dynamic interaction <u>or</u> Congested traffic


- Model chosen form of traffic through truck arrivals:
 - Free-flow: simple headway models (e.g. HeDS or Poisson)
 - Congested: assume small gaps; 5 m, 7.5 m etc and all trucks
- Is there a better all-inclusive way?

Traffic Microsimulation

Traffic Microsimulation

- Traffic microsimulation models driving behaviour in discrete time intervals.
- The Intelligent Driver Model (IDM) is used.
- Parameters include:
 - Desired velocity;
 - Comfortable acceleration;
 - Comfortable deceleration;
 - Safe time headway.
 - Different parameters for cars and trucks.
- Different parameters for cars and trucks
- Lane changing model is MOBIL based on acceleration advantage

Longitudinal movement

Parameter	Cars	Trucks		
Desired velocity, v_0	120 km/h (±20)	80 km/h (±20)		
Safe time headway, <i>T</i>	1.2 s	1.7 s		
Maximum acceleration, a	0.80 m/s ²	0.40 m/s ²		
Comfortable deceleration, b	1.25 m/s ²	0.80 m/s ²		
Minimum jam distance, <i>s</i> ₀	1.0 m	1.0 m		
Elastic jam distance, s ₁	10.0 m	10.0 m		

Output Detector

Small Truck

Large Truck

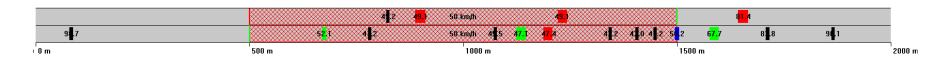
Low-loader

Crane

Flow-Density Detector

Composition Detector

Headway Detector


LC Lane Change Detector

Acceleration function:

$\frac{dv}{dt} = a \left[1 - \left(\frac{v}{v_0}\right)^{\delta} - \left(\frac{s^*}{s}\right)^2 \right]$	
---	--

Desired distance to vehicle in front:

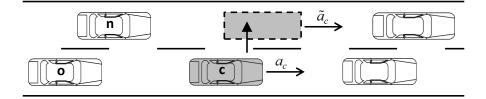
$$s^* = s_0 + s_1 \sqrt{\frac{v}{v_0}} + vT + \frac{v(\Delta v)}{2\sqrt{ab}}$$

Speed limit section

Gradient section

50 km/h

5%


Sim. Time - Day: 1250 - 0:11:33.80 🔳 Car

Real Time - Day: 0 - 0:-1:-24.85

Lane changing

- What is involved?
 - spatial arrangement,
 - relative velocities
 - mechanical performance
 - psychological nature of driver (aggressiveness, perception, and reaction times)

Parameter	Cars	Trucks
Politeness factor, <i>p</i>	0.25	0.25
Changing threshold, $\Delta a_{ m th}$	0.1 m/s²	0.14 m/s ²
Maximum safe deceleration, b _{safe}	12 m/s ²	12 m/s ²
Bias for the slow lane, $\Delta a_{ m bias}$	0.30 m/s ²	0.3 m/s ²

Acceleration advantage:

$$\tilde{a}_{c}(t) - a_{c}(t) \geq \Delta a_{th} + p \Big[\Big(a_{n}(t) - \tilde{a}_{n}(t) \Big) + \Big(a_{o}(t) - \tilde{a}_{o}(t) \Big) \Big]$$

Safety criterion:

$$\tilde{a}_n(t) \ge b_{\text{safe}} = -12 \text{ m/s}^2$$

Asymmetric passing bias:

 Δa_{bias}

🗞 MONASH University

Implementation

Simba: <u>Sim</u>ulation for <u>Bridge Assessment (2006-13)</u>

- Up to 10 lanes each direction, straight road of any length
- Vehicles read from Weigh-In-Motion file and passed along the road
- Lane closures, speed limits, lane change ban, gap control regions, etc
- Multiple types of traffic detector output
- 6 vehicles types (user-defined)
- Stochastic driving parameters:
 - Various parametrized distributions
 - Discrete distributions
- Load effects calculated:
 - User-defined or built-in influence line,
 - lateral distribution

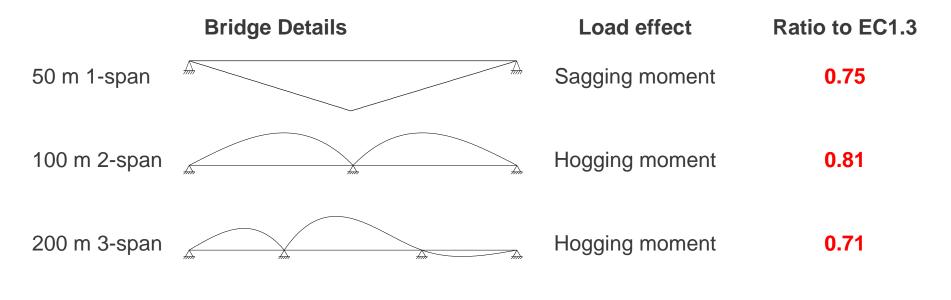
Simba - Simulation for Bridge Assessment

Bridge Load Assessment

Assessment and Management of Bridge Loading using Traffic Microsimulation 19 November 2013 15

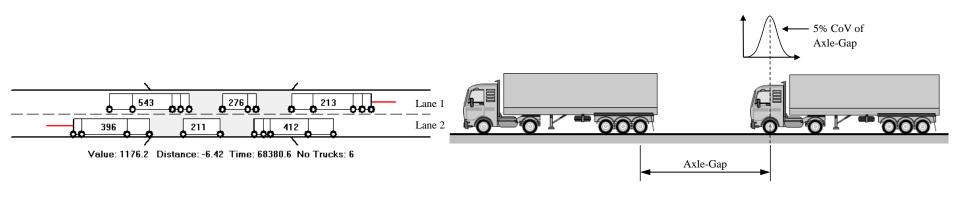
Bridge Traffic Load Assessment

- Microsimulation can model all real traffic states
 - Different flows, densities, and loadings through time
 - Previous assumption of free-flow <u>or</u> congested flow is thus overly simplistic and accounted for naturally
- Microsimulation has been used for:
 - Evaluating the Eurocode load model (LM)
 - Calibrating a simple congested traffic load model
 - Assessing long span load models
 - Determining the governing traffic conditions



Evaluating the Eurocode Load Model

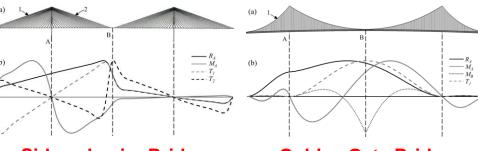
- 1000 hours of single-lane traffic heavy congestion simulated, representing 1 year of very busy traffic.
- Extrapolated to a 1000-year return period


Lipari et al (2012)

Ratio of real traffic to Eurocode found:

Calibration of a congestion load model

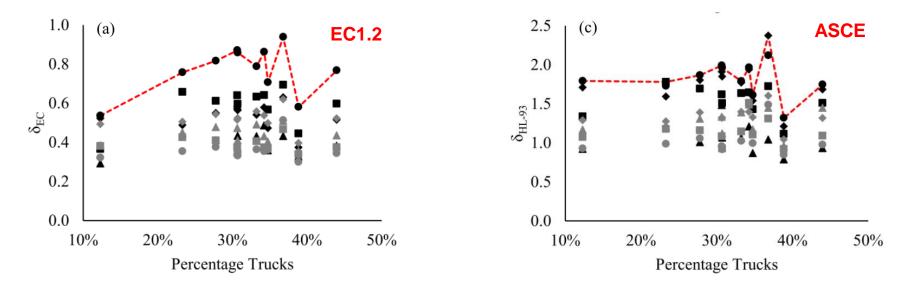
- Very heavy congestion passed over bridges (20 to 60 m), considering a range of load effects and transverse distribution of loading.
- A simple model was calibrated to give the same 1000-year load effects.



Mean nominal axle gaps found were: Caprani (2012a)
 7.40 m, 8.48 m, 9.94 m, for 0%, 50% and 80% cars

Assessing long-span load models

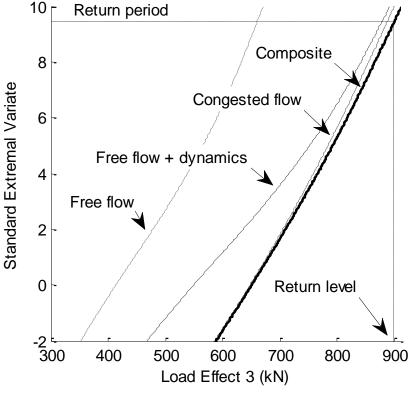
- Alabama (US) WIM data:
 - 21 million trucks
 - 11 sites



Sidney Lanier Bridge

Golden Gate Bridge

Enright et al (2013)


Determining the governing traffic form

Composite

Load Effect

- Statistical approach to finding governing traffic state
- Critical Traffic Index:
 - free-flow + dynamics (C = 1)
 - congestion (C = -1)
 - Mixture of traffic states $C \sim 0$

Load Effect

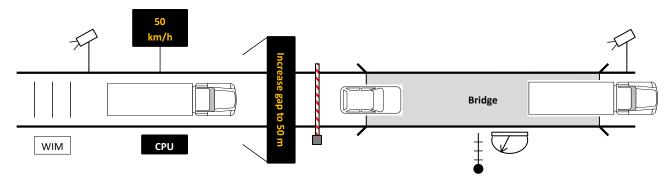
Factor

Function

Critical traffic indices

Free flow (+1), Congestion (-1)

Traffic Composition		0% Cars				80% Cars						
Bridge length (m)												
DAF Model	Load Effect	20 m	20 m	30 m	40 m	50 m	60 m	20 m	30 m	40 m	50 m	60 m
ė	LE 1	-0.85	С	-0.91	-0.26	F	С	С	С	С	С	
AASHTO- LRFD	LE 2	0.58	0.88	С	F	F	С	С	С	С	С	
	LE 3	С	-0.77	0.28	F	F	С	С	С	С	С	
	LE 1	0.87	0.79	F	F	F	С	С	С	С	0.53	
С Ш	LE 2	F	F	0.55	F	F	С	С	F	F	F	
	LE 3	-0.49	0.89	F	F	F	С	-0.93	С	F	F	
GDAF	LE 1	F	F	F	F	F	F	F	0.28	F	F	
	LE 2	F	F	F	F	F	0.72	F	F	F	F	
	LE 3	F	F	F	F	F	0.91	0.89	0.41	F	F	


DAF model has significant influence; traffic composition less so

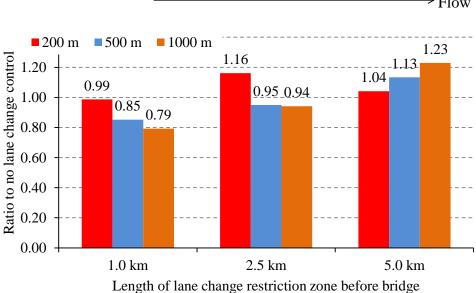
Bridge Load Management

Bridge Load Management

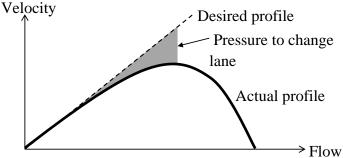
- Microsimulation allows the evaluation of possible traffic control measures relative to the status quo
 - Facilitates problem bridges to be kept operational

- Recent work has examined:
 - Controlling gaps between vehicles
 - Controlling lane changing
 - Controlling vehicle access

Controlling gaps


- Bridge-To-Vehicle (B2V) communication
 - Informing driver of the appropriate gap to front vehicle
 - Parameters examined using microsimulation:
 - Compliance rates
 Broadcast distance
 Required time gap
 - If 10% trucks respond: loading drops by 10%
 - 90% respond: loading reduces by up to 47%
 - Significantly, it does <u>not</u> cause traffic disruption

(Caprani 2012c, Caprani et al 2013)


Controlling lane changing

- Lane changing:
 - trucks have lower desired velocity
 - cars pull out from between trucks
 - truck platoons are formed
 - critical loading situation
- Results are varied:
 - Up to 21% reduction
 - But very sensitive, and could make it worse

(Caprani et al 2012)



Controlling vehicle access

If loading threshold exceeded, prevent access:

- Queue dispersion model of traffic from behind barrier
- Results:
 - reductions ~2-12%
 - Interrupts traffic stream
 - 'Lead-in' distance important

Non Barrier Traffic Load History Barrier Traffic Load History 1800 Barrier Threshold Level = 1235 (kN) Barrier 1600 Barrier Triggered Triggered 1400 Total Load (kN) 1200 1000 800 600 Barrier 400 Opens 200 0 20 40 60 80 100 0 Time (s)

(Renehan & Caprani 2012)

MONASH University

Summary

Summary

- Traffic loading is the main source of uncertainty in bridge assessment: it's accurate estimation can make large savings possible.
- Traffic microsimulation is the ideal tool to explore traffic loading for assessment and management
- For assessment, the accuracy of current traffic load models can be assessed, and new ones calibrated.
- For management, new strategies can be explored and refined, facilitating the retention and operation of existing bridges

Acknowledgements

Colleagues & collaborators:

Prof. Eugene OBrien, Prof. Eugen Bruehwiler, Prof. Alan O'Connor, Dr Bernard Enright, Dr Arturo Gonzalez, Dr Sam Grave, Prof. Geoff McLachlan, Dr Pariac Rattigan

• Students:

Colm Carey, Brian Dunbar, Dr Alessandro Lipari, Neal Renehan, Mark Treacy

References

- Caprani, C.C. (2012a), 'Calibration of a congestion load model for highway bridges using traffic microsimulation', Structural Engineering International, 22(3), 342-348
- Caprani, C.C. (2012b), 'Lifetime highway bridge traffic load effect from a combination of traffic states allowing for dynamic amplification', ASCE Journal of Bridge Engineering, 18(9), 901–909.
- Caprani, C.C. (2012c), 'Bridge-to-vehicle communication for traffic load mitigation', *Proceedings of Bridge and Concrete Research in Ireland*, Dublin
- Caprani, C.C., Enright, B. and Carey, C. (2012), 'Lane changing control to reduce traffic load effect on long-span bridges', International Conference on Bridge Maintenance, Safety and Management, IABMAS, Lake Como, Italy, July.
- Caprani C.C., OBrien, E.J. and Lipari, A. (2013), 'The effect of controlling heavy vehicle gaps on long-span bridge loading', *Transportation Research Board, 92nd Annual Meeting*, Washington DC. <u>http://amonline.trb.org/2vcj10/2vcj10/1</u>
- Enright, B., Carey, C., Caprani, C.C. (2013), 'Microsimulation Evaluation of Eurocode Load Model for American Long-Span Bridges', ASCE Journal of Bridge Engineering, in print. <u>http://dx.doi.org/10.1061/(ASCE)BE.1943-5592.0000546</u>
- Enright, B., Carey, C., Caprani, C.C. (2012), 'The Effect of Lane Changing on Long-Span Highway Bridge Traffic Loading', *International Conference on Bridge Maintenance, Safety and Management*, IABMAS, Lake Como, Italy, July.
- Lipari, A., OBrien, E.J. and Caprani C.C. (2012), 'A comparative study of bridge traffic load effect using micro-simulation and Eurocode load models', *International Conference on Bridge Maintenance, Safety and Management*, IABMAS, Lake Como, Italy, July.
- Renehan, N. and Caprani, C.C. (2012), 'A live load control procedure for long-span bridges', International Conference on Bridge Maintenance, Safety and Management, IABMAS, Lake Como, Italy, July.
- Treiber, M. and Helbing, D. (2002), Realistische Mikrosimulation von Straßenverkehr mit einem einfachen Modell, 16th Symposium "Simulationstechnik ASIM 2002", Rostock, edited by Djamshid Tavangarian and Rolf Grützner pp. 514--520.

