

SHM of Buildings and Bridges: Research at QUT

From Theory to Application and Implementation

Research Team Members

- Chief Investigators
 - Prof Tommy H.T. Chan
 - Prof David P. Thambiratnam
 - Prof Andy C. C. Tan
 - -Dr. Sabrina Fawzia

Research Staff

- Dr. Regina Sampaio
- Dr. Manindra Kaphle
- Dr. Frank Wang
- Dr. Buddhi Wahalathantri
 Mehran Aflatooni
- Dr. Rupika P. Bandara
- Dr. Herath Thilakarathna

- Man H. Yau
- Craig Cowled
- Theanh Nguyen
- Kuo Li
- Parviz Moradi Pour
- Wasanthi Wickramasinghe
- Thisara S. Pathirage
- Manal Hussin
- Ziru Xiang

a university for the **real** world[®]

Structural Health Monitoring (SHM) research at **QUT** - **Introduction**

SHM research at QUT - Research Aims

- 1. QUT SHM test-bed; Building SHM syst. (cont.) & Footbridge SHM syst.
- 2. Effects of Data Synchronization Error (DSE) on Output-only Modalbased Damage Identification (OMDI)
- **3.** Experimental modal analysis of QUT Bridge Model using a global multi-layer-hybrid optimisation method.

SHM research at QUT - System Development1. QUT SHM test-bed

Building SHM syst.

- Sensors located at L4, 6, 8 & 10
- Sensor sensitivity: 2V/g
- Embedded data acquisition using NI cRIO : To accommodate broadly distributed sensors (also as for strain gauges, soil pressure sensors, etc)

a university for the real world®

- Each sensor (in small enclosure) connected to one cRIO (glass box)
- TCP/IP command-based solution: initial data synchronisation errors reduced to ~ 0.3 to 0.5 millisecond
- Initially sampled @ 2kHz, decimated to 100Hz

QUI

SHM research at **QUT** - **System Development**

Building SHM syst. (cont.)

- Unmeasured DOFs computed from measured ones of the same level based on theory of rigid body of slab
- At least 7 modes excited by ambient excitation (wind, human activities...)
- QUT Modes estimated by Output-only Modal Analysis techniques
 - Mode shape animation examples: <u>mode #1</u>, <u>mode #4</u> & <u>mode #7</u>

SHM research at **QUT** - **System Development**

DSE: Data Synchronization Error; FDD: Frequency Domain Decomposition; SSI-data: data-driven Stochastic Subspace Identification; MAC: Modal Assurance Criterion QUI

SHM research at QUT - System Development

- Findings for single setup
- Frequency: No change for FDD & almost no change for SSI-data
- Mode shape change (via MAC) : rapidly (non-proportionally) increases for higher DSE levels; higher impact for higher modes
- SSI-data works almost well as FDD

0.6

0.5

0.4

0.1

0.6

0.5

0.4

0.3

0.2

0.1

MAC deviation

FDD @ 1dt DSE

56

7 8

Mode

4

FDD: Frequency Domain Decomposition; SSI-data: data-driven Stochastic Subspace Identification DSE: Data Synchronization Error; MAC: Modal Assurance Criterion;

a university for the real world

- 1. Vertical Displacement Measurement of bridges using Fibre Bragg Grating (FBG) sensors
- 2. Unsupervised learning novelty detection methods for Vibration Based Damage Detection (VBDD) to cope with Environmental and Operational Variations (EOVs) impacts.
- 3. Develop a practical FBG system for measuring the temperature, strain/displacement and etc. using modulation of FBG strain.

a university for the **real** world®

1. Vertical Displacement Measurement of bridges

3. Develop a practical FBG system

Theory of the nonlinear string transverse force amplifier

a university for the **real** world

Comparison of FBG and piezo accelerometers results

14

QUT

Completed:

- 1. Correlation-based Modal Strain Energy (MSEC) employing multi-layer Genetic Algorithms for truss bridges.
- 2. Improved Modal Strain Energy based Damage Index (MSEDI) for Reinforced Concrete Structures.
- **3.** A Three-Stage Damage Identification Method for Building Structures Using Frequency Response Functions (FRFs) and Neural Networks (NNs).
- 4. Extract the modal parameters of a heavy-haul-railway RC bridges network.

Ongoing:

- 1. Synthetic Rating System for Railway Bridge Management.
- 2. An improved Modal Strain Energy method for bridge damage identification.
- 3. Damage detection of suspension bridges using a multi-criteria approach.

A1. Direct Modal Strain Energy Correlation-based (DMSEC) Method

Structural Health Monitoring (SHM) research at applications

Advanced Optimisation Technique: Genetic Algorithm (GA)

A2. Improved Modal Strain Energy based Damage Index (MSEDI)

Theory – DI Formulae, Improved MSEDI

Modification Function

Reduce intensity of false alarms

Modal Sensitivity Value (MSV)

During combination of modes Assign different weight for individual modes

Sets the Datum Level to Zero

$$MF2(j, i) = \left| \frac{\varphi''(j, i)}{\varphi^{ii}(i)_{max}} \right|$$
$$MSV(1, i) = \frac{\frac{\left\{ \sum_{j=1}^{j=N} |\emptyset_d(j, i)|^2 \right\}^{0.5}}{|\omega_d(i)|^2} - \frac{\left\{ \sum_{j=1}^{j=N} |\emptyset_u(j, i)|^2 \right\}^{0.5}}{|\omega_u(i)|^2}}{\frac{\left\{ \sum_{j=1}^{j=N} |\emptyset_u(j, i)|^2 \right\}^{0.5}}{|\omega_u(i)|^2}}$$

$$\beta 9_{(i)}(j,i) = [\beta 2(j,i) - 1] \times MF2(j,i)$$

$$\beta 11_{c(1:M)}(j,1) = \frac{1}{M} \sum_{i=1}^{i=M} [\beta 9(j,i) - 1] \times MSV(1,i) \qquad \beta 2_{(i)}(j,i) = \frac{1 + (FSE_{ji})_d}{1 + (FSE_{ji})_u}$$
$$U(j,i) = \frac{EI}{2} \int_{X_j}^{X_{j+1}} \{\varphi_i''\}^2 dx \qquad U_i = \frac{EI}{2} \int_{0}^{L} \{\varphi''(j,i)\}^2 dx \qquad FSE_{ji} = \frac{U_{ji}}{U_i}$$

a university for the real world®

A3. Three-Stage Damage Identification Method Using FRFs and NNs

Illustrative example

- A low rise building with 10 floors
- Numerical simulations ANSYS general-purpose FEM analysis software
- Damages simulated by reducing stiffness of elements by a specified ratio (10%, 25%, 40% and 55%)
- 60 damage cases (3 floors x 5 columns x 4 severities)
- 12 measurement locations are available
- Three noise levels-

1%, 3%, 5% and 10%

Identification of Damaged Floor- first stage

Training, validation and test data partition for the identification of damaged floor

		Damage Location (damaged floor)							
		1 st floor	5 th floor	10 th floor					
Damage	10	Train	Train	Test					
	25	Val	Test	Train					
	40	Test	Train	Val					
	55	Train	Val	Train					

Training, validation and test partitioning of all FRFs data for identification of damaged floor

Data Set	Samples	Remarks				
Training	120	30 damage cases x 4 noise levels				
Validation	60	15 damage cases x 4 noise levels				
Test	60	15 damage cases x 4 noise levels				

A4. Extract the modal parameters of a heavy-haul-railway RC bridges network

Modal Identification Methodology

Three types of recorded signals:

- The short duration free vibration immediately after the train passage (FV);
- The long duration natural ambient vibration between train passages (AV);
- Signals obtained using a drop- weight system (DW) or people jumping over the bridge (PJ)

Two methods were used which are implemented in a commercial software package Artemis® used in this work:

- Enhanced frequency domain decomposition technique (EFDD)
- Stochastic subspace identification technique (SSI)

Identified frequencies for Bridges 5, 15, 20 and 58A

		Free Vibration		Drop Weight			Ambient Vibration									
Bridge		SSI E		EF	DD	SSI		EFDD		SSI		EFDD				FEM
	Ν	Freq. (Hz)	Damp.	Freq. (Hz)	Damp.	Freq. (Hz)	Damp.	Freq. (Hz)	Damp.	Freq. (Hz)	Damp.	Freq. (Hz)	Damp.	Mode Type	Mac	Freq. (Hz)
5	1	8.91	1.36%	9.17	0.24%	9.04	1.16%	9.01	0.96%	9.23	1.57%	9.28	1.34%	vertical bending	0.85 <m>0.99</m>	9.24
	2					10.77	2.29%	xx	xx					vertical bending	xx	10.19
	3	11.15	0.17%	11.13	0.50%	12.66	0.59%	xx	xx	11.96	0.45%	12.04	0.78%	vert. and lat. bending	0.78 <m>0.99</m>	11.55
	4	13.06	0.57%	xx	XX	13.92	0.40%	13.12	1.02%	xx	XX	13.34	0.86%	torsion	0.86 <m>0.95</m>	хх
15	1									2.46	3.70%	2.45	1.09%	lateral bending	0.94	2.39
	2	7.46	1.96%	xx	XX					7.47	0.52%	7.46	0.65%	vertical bending	0.95 and 0.96	7.88
	3	8.53	2.15%	xx	XX									lateral bending	xx	8.77
	4									10.40	1.18%	xx	xx	vertical bending	xx	8.96
	5	11.20	0.85%	xx	XX					11.15	1.49%	11.23	1.72%	vertical bending	0.86 <m>0.97</m>	11.58
20	1	7.31	1.17%	7.24	1.11%	7.33	1.87%	7.28	0.50%					vertical bending	0.63 <m>0.98</m>	6.07
	2					8.16	1.03%	8.13	0.54%					vertical bending	0.8	6.6
	3	8.97	2.97%	9.08	0.59%	9.09	1.35%	xx	XX					torsion	0.55 <m>0.78</m>	7.09
58A	1	12.89	2.88%	13.13	1.12%	13.06	2.85%	13.13	2.33%	13.06	3.06%	13.11	3.20%	vertical bending	0.87 <m>0.99</m>	14.68
	2	23.22	2.05%	xx	XX	21.50	2.95%	21.84	4.29%	20.52	1.83%	20.71	0.87%	torsion	0.64 <m>0.99</m>	хх

B1. Synthetic Rating System for Railway Bridge Management

Factors Criticality

Critical factors categories:

1. Factors which the probability and severance of their occurrence are important:

- Flood (FI)
- Earthquake (Eq)
- Wind (W)
- Collision (Col)
- 2. Factors which gradually degrade the bridge:
 - Environmental and fatigue effects (Ev)

Overall criticality of factors:

Risk analysis conducted in design standards and Analytic Hierarchy Process (AHP) are used to identify the *Overall criticality of factors*.

$$A = \begin{bmatrix} Ev & Col & Fl & W & Eq \\ Ev & 1 & A_{12} & A_{13} & A_{14} & A_{15} \\ A_{21} & 1 & A_{23} & A_{24} & A_{25} \\ A_{31} & A_{32} & 1 & A_{34} & A_{35} \\ W & A_{41} & A_{42} & A_{43} & 1 & A_{45} \\ Eq & A_{51} & A_{52} & A_{53} & A_{54} & 1 \end{bmatrix}$$

Pair-wise comparison matrix used in AHP method

Criticality and vulnerability of the components.

Synthetic Rating Method of Railway Bridge is based on

- Criticality of factors
- Criticality and vulnerability of the components

B2. An improved Modal Strain Energy Method

1. Improved MSE equation

$$\Delta MSE_{i,j} = \frac{1}{2}\alpha_j \{\phi_i\}^T [K_j] \{\phi_i\} + \frac{1}{2} \left[\{\phi_i\}^T [K_j] \sum_{i=1}^L \alpha_i \sum_{r=1}^{md} \frac{\{\phi_r\}^T [K_i] \{\phi_i\}}{\lambda_i - \lambda_r} \{\phi_r\} + \sum_{i=1}^L \alpha_i \sum_{r=1}^{md} \frac{\{\phi_r\}^T [K_i] \{\phi_i\}}{\lambda_i - \lambda_r} \{\phi_r\}^T [K_j] \{\phi_i\} \right]$$

2.1 Improved Sensitivity Matrix (Equation)

$$\{\phi_i\}^T[K_j]\{\phi_i\} - \{\phi_i^d\}^T[K_j]\{\phi_i^d\} + \sum_{r=1}^n \{\phi_i\}^T[K_s] \frac{\{\phi_r\}^T[K_t] \{\phi_i\}}{\lambda_i - \lambda_r} \{\phi_r\} + \sum_{r=1}^n \frac{\{\phi_r\}^T[K_t] \{\phi_i\}}{\lambda_i - \lambda_r} \{\phi_r\}^T[K_s]\{\phi_i\} + \sum_{r=1}^n \frac{\{\phi_r\}^T[K_t] \{\phi_i\}}{\lambda_i - \lambda_r} \{\phi_r\}^T[K_s]\{\phi_i\} + \sum_{r=1}^n \frac{\{\phi_r\}^T[K_s] \{\phi_i\}}{\lambda_i - \lambda_r} \{\phi_r\} + \sum_{r=1}^n \frac{\{\phi_r\}^T[K_s] \{\phi_i\}}{\lambda_i - \lambda_r} \{\phi_r\}^T[K_s]\{\phi_i\} + \sum_{r=1}^n \frac{\{\phi_r\}^T[K_s] \{\phi_i\}}{\lambda_i - \lambda_r} \{\phi_i\} + \sum_{r=1}^n \frac{\{\phi_r\}^T[K_s] \{\phi_i\}}{\lambda_i - \lambda_r}$$

2.2 Improved Sensitivity Matrix (Matrix notation)

$$\begin{bmatrix} \beta_{11}^{*} & 0 & \dots & 0 \\ 0 & \beta_{22}^{*} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \beta_{qq}^{*} \end{bmatrix} + \begin{bmatrix} \beta_{11}' & \beta_{12}' & \dots & \beta_{1q}' \\ \beta_{21}' & \beta_{22}' & \dots & \beta_{2q}' \\ \vdots & \vdots & \ddots & \vdots \\ \beta_{q1}' & \beta_{q2}' & \dots & \beta_{qq}' \end{bmatrix}$$

3. Fractional reduction coefficients

$$\begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_q \end{bmatrix} = \left(\begin{bmatrix} \beta^*_{11} & 0 & \dots & 0 \\ 0 & \beta^*_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \beta^*_{qq} \end{bmatrix} + \begin{bmatrix} \beta'_{11} & \beta'_{12} & \dots & \beta'_{1q} \\ \beta'_{21} & \beta'_{22} & \dots & \beta'_{2q} \\ \vdots & \vdots & \ddots & \vdots \\ \beta'_{q1} & \beta'_{q2} & \dots & \beta'_{qq} \end{bmatrix} \right)^{-1} \begin{bmatrix} MSEC_{l1} \\ MSEC_{l2} \\ \vdots \\ MSEC_{lj} \end{bmatrix}$$

26

2D verification and simulation

B3. Damage detection of suspension bridges

Methodology

Derivation of Modal Flexibility based Damage Index

a university for the **real** world[®]

Question?